
COMP 90042: Project 1

William Webber

April 13, 2014

Version history:

• v 1.0 (30/03/2014) – Original version

• v 1.1 (04/04/2014)

– Add two-word query to third question, to clarify that you can’t assume that
queries are single-word only.

– Note that the Wikipedia page for “Apache Shale” is missing

– Correct similarity values in example in Question 2

• v 1.2 (04/04/2014)

– Correcting similarity score in Question 3

1 Introduction
The goal of this project is to build a reference lookup system for online forums. A
user reading a forum may select words or phrases, or even whole posts, and we will
suggest relevant readings in a reference guide or encyclopædia. Eventually, we would
want to be able to automatically create links from terms or phrases in the post to the
encyclopædia, though we will only make initial steps towards that here.

For this project, forum posts and encyclopædia entries will be represented simply
as bags of words. (Of course, more could be done with richer metadata, such as ency-
clopædia article titles, post subjects and threads, links between encyclopædia articles,
and so forth). The encyclopædia is represented simply as a set of articles, with no
structure or links between them. There is, however, a hierarchy in forums that might
be exploited for more evidence. A post belongs to a forum, and a forum belongs to a
community (that is, a group of forums).

The key point in the search system we are developing is that when a user launches a
query onto the encyclopædia, they do so with a forum post in front of them. The query
therefore needs to be interpreted in the context of the post, of the forum that the post is
part of, and of the community the forum belongs to. So, for instance, if the query (say,
the word the user clicked on) was “java”, then if the forum was a discussion board for
Indonesian politics, we would probably want to return the encyclopædia article about

1

the island; if the forum was for coffee drinkers, we’d want to return the article about the
style of coffee; whereas if it were for programmers, the article about the programming
language should be returned. We’ll build up to this full functionality in stages.

2 Data set
For development, we will use (a subset of) Wikipedia as the encyclopaedia, and (a
subset of) the mailing lists from the Apache Software Foundation as our forums. The
system we are developing, however, should be a fully general one, into which any
forums and any encyclopædia could be dropped. Don’t code in solutions specific to
these datasets (such as manually adding “apache” to each query).

2.1 Wikipedia dataset
I have selected 27,118 articles from the March 2014 dump of the English version of
Wikipedia. This selection may be downloaded from:

http://codalism.com/comp90042/proj/proj1/wiki.txt.bz2

(24MB in size). The articles have had formatting and punctuation stripped, and have
then been tokenized. The tokens have been case-folded, and very light stopping ap-
plied.1 The terms are unstemmed. The processed collection is stored in a single plain-
text file, one line per document. The first token on the line is the name of the Wikipedia
article as in id (with spaces replaced by underscore); the remaining tokens are the terms
occurring in the article.

NOTE: the name of the Wikipedia article is not to be used as a search field for any
of these questions. (Yes, you’d get a big advantage from doing so, but the goal of these
questions is to see what you can do without such metadata.)

Technical details: Formatting was stripped off using the corpora.wikicorpus
class from gensim. Tokenization was performed using the StandardAnalyzer
class from Lucene.

2.2 Apache Software Foundation dataset
The forum dataset is taken from the full ASF mail archives up to July 18th, 2011
(available from the Amazon Web Services public dataset collection). I have selected
the user-oriented mailing lists for eleven smaller Apache projects; these are listed in
Table 1. This selection may be downloaded from:

http://codalism.com/comp90042/proj/proj1/asf.tar.bz2

(6MB in size). Forum posts were processed by stripping off all headers, then tokenizing
the bodies in the same was as the Wikipedia articles.

1using the default Lucene stopword list; see http://stackoverflow.com/questions/
17527741/what-is-the-default-list-of-stopwords-used-in-lucenes-stopfilter

2

Project Forum Posts Wikipedia page Project description

abdera user 1017 Apache Abdera Atom blog syndication
aries user 573 Apache Aries OSGi blueprint container
beehive user 1885 Apache Beehive Java EE framework
click user 2073 Apache Click Web application framework
forrest user 5031 Apache Forrest Web publishing framework
james general 900 Apache James Mail server
shale user 2599 Apache Shale2 JSF webapp framework
sling users 1483 Apache Sling JCR content framework
synapse user 2884 Apache Synapse Enterprise service bus
tiles users 1758 —3 HTML templates
tuscany user 6832 Apache Tuscany Service-oriented architecture

Total 27035

Table 1: Wikipedia collection.

The resulting text collection is held one file per forum, a document per line, with
the first token being the id of the article, and the remaining tokens being the terms from
the article. (The original format of the forums, in MBOX format, is available from me
on request.)

3 Questions

3.1 Question 1: Encyclopædia index
Implement, in Python, a tool which creates an inverted index of the Wikipedia arti-
cles. Term document weights are to be unit-length normalized TF*IDF scores, with
the following formulae:

tfd,t = log(1 + fd,t) (1)

idft = log

(
N

ft

)
(2)

(3)

where fd,t is the number of times term t appears in document d; ft is the number
of documents term t appears in throughout the collection; and N is the number of
documents in the collection.

Implementation note: The resulting index should be stored on disk, but
the format you store it in is up to you. Two possibilites, both of which are
fine, are using the Python shelve class, or simply pickle’ing the full
index and dump to disk (use the cPickle module if you do this). You
may not use any packages outside the standard Python library to imple-
ment this section. Exception: if the shelve package does not work on
your system, you can use a replacement package.

3

$ echo -e "apache\napache aries\napache apache aries" | python qry.py wiki.db 5

>> apache
Apache_Isis 0.232290
Southern_Apache_Museum 0.216969
Apache_Excalibur 0.206819
Apache_Rocks_the_Bottom! 0.199597
Apache_Incubator 0.195659

>> apache aries
Aries 0.278531
Apache_Aries 0.250711
Apache_Isis 0.232290
Southern_Apache_Museum 0.216969
Apache_Excalibur 0.206819

>> apache apache aries
Apache_Isis 0.368171
Southern_Apache_Museum 0.343888
Apache_Excalibur 0.327800
Apache_Rocks_the_Bottom! 0.316355
Apache_Aries 0.313229

Figure 1: Example search output.

3.2 Question 2: Querying the encyclopædia
Implement a query interface to the index built in Question 1. For the query vector, the
weight wq,t of query term t should be calculated as:

wq,t = log(1 + fq,t) (4)

where fq,t is the frequency of the term in the query.
The implementation should take the index and the number of results to return per

query as command line arguments, then read a query a line at a time from standard
input, and print the results to stdout, as “article-name score”. An example invocation
and output from this interface is given in Figure 1. (It is simpler to place your queries
in a file, then cat them to program; I’ve used echo here just for illustration.) Place
your results for the same queries, but to depth 10, in your answer.

3.3 Question 3: Pivoted length normalization
Note that the first result in Figure 1 for the query “Apache” is “Apache Isis”, rather
than the “Apache” main page. Why is this? Similarly, when we include “apache” twice
in the third question (trying to bring “Apache Aries” above “Aries” in the answer), we
again get “Apache Isis” on top.

4

To try to fix this, implement the pivoted document length normalization proposal
of Singhal, Buckley, and Mitra4, as described in Section 2.3 of that paper. Specifically,
under unit length normalization, the normalized weight of term t in document d is:

ŵd,t =
tf*idfd,t
|~Vd|

(5)

where |~Vd| is the length of the (TF*IDF) document vector for document d. Under
pivoted length normalization, the weight changes to:

w̃d,t;s =
tf*idfd,t

(1− s)
(∑

d |~Vd|
)
/N + s|~Vd|

(6)

where
(∑

d |~Vd|
)
/N is the average document length, and 0 < s < 1 is a user-tunable

parameter. What is the effect of increasing s? What happens if we set s = 1?

Implementation note: there are two ways you could do this. You can either
calculate the unit length normalization at index time, and store w̃d,t;s in
the index, with a fixed s. Or you can store tf*idf in the index, as well as
document lengths in a separate lookup table, and calculate w̃d,t;s at query
time. Implement it whichever way you prefer. But whichever way you
implement it, s should be a command-line option, not hard-coded into
your implementation.

Run the queries in Figure 1 to depth 10, with the slope parameter set to s = 0.5,
and place your results in your answer. (When I run the query “apache”, I now get
“Apache (disambiguation)” as the top result, with score 0.157835.)

3.4 Question 4: requiring all query terms
If you look at the results to the query “apache aries”, shown in Figure 1, you’ll note that
some of them have nothing to do with “aries” (the result documents do not, for instance
contain the term). You’ll probably observe the same behaviour for the pivot-normalized
results as well. The system does this because the “apache” match is so strong that the
lack of an “aries” match is overlooked. This behaviour, however, is often confusing to
users. Many search systems modify the statistical matching algorithm to require that
every matching document contains all of the query terms, at least for short queries.
Add an option to the query evaluation system you built in Question 3 that specifies that
it should run in this mode. Make this option settable on the command line. Run the
queries:

• apache james

• apache forrest

• apache aries

with and without this option turned on, and show the results.
4Singhal, Buckley, and Mitra, “Pivoted Document Length Normalization”, SIGIR, 1996; http://

dspace.library.cornell.edu/bitstream/1813/7217/1/95-1560.pdf.

5

3.5 Question 5: designing disambiguation by source context
Now that we’re reasonably happy with the encyclopædia search system in isolation
(though certainly there is more that we could do to improve it), it’s time to solve the
larger problem. If you run the names of the ten projects in Table 1 against the Wikipedia
search system (that is, “abdera”, “aries”, etc., except for “tiles”), you’ll find that the
page for the Apache project never turns up first, and only twice turns up in the top 5
(third for “abdera”, and fifth for “tuscany”). Yet a user clicking on these words in a
posting on an Apache mailing list would almost certainly expect the Wikipedia page
for the named project to come up first, and related pages near it. Similarly, searches
for more general terms that have special meanings in a computer context, such as “re-
quest”, “message”, “file”, “service”, “class”, “public”, or “string”, frequently produce
context-inappropriate results (“String quintet repertoire” for “string”, for instance).

Drawing upon the content of the course up to and include Lecture 7 (“Singular
value decomposition”), describe three different methods that could be used to add con-
text to the searches, and so return more appropriate results. (Manually adding “apache”
to each query is not a suitable method, as the system is meant to be general-purpose.)
The three methods may be independent, or one may be a variant of another. Give con-
sideration not just to the technologies you might apply, but to the sources of evidence
you might use. You should assume that the user always has a single forum post open in
front of them when they launch a query. You may not, however, assume that the query
is taken from a particular bit of text within the forum post.

3.6 Question 6: implementing disambiguation
Take one of the disambiguation methods you’ve designed above, and implement it. For
this question, you may use the facilities of gensim, scipy, or a similar package,
if required. Show the output of a search for each of the eleven project names given in
Table 1, and also for the queries “request”, “message”, “user”, “file”, “service”, “class”,
and “file request”. Where your method uses contextual evidence from a particular
forum or post, please specify the forum and/or post that you use for context for each of
the above queries.

4 Project details

4.1 Submission format
Project submission takes two forms: text and code.

4.1.1 Text

Prepare a written document that describes your answers to each of the above questions.
Where the question requires an implementation in code, give a description of how the
implementation was designed and made. The document should include answers to
running questions in the project specification, as well as the output of searches, where
required.

6

The written document should be in one of the three formats:

• Plain text

• HTML (with all required included files)

• Latex (compileable with PDFlatex)

You will not loose marks for using only plain text. Do not submit a Word document,
or any other binary format (including PDF). If you are using Latex, do not submit the
generated PDF or any intermediary files.

4.1.2 Code

Code is to be neatly organized, adequately commented Python code. It is prefer-
able that you develop one package that is able to perform all of the above functions,
with appropriate options to specify which is required. See the Python optparse
and argparse modules for processing command-line options. Please clearly doc-
ument the code that implements Question 3 (pivoted document-length normalization)
and Question 4 (requiring all query terms).

4.2 Submission method
Submission is to be via Subversion. Create a directory marked “proj1” at the top level
of your Subversion working directory. You may use whatever directory structure be-
neath that you like, as long as it is clear where the text and where the code are. Do not
place source data or generated indexes into Subversion. Check in your code and text
regularly while you work on it.

4.3 Deadline
The due date for this project is Sunday, 27 April, at 11:59pm. Whatever is committed
in Subversion by then will be taken as your project submission.

4.4 Individual work
This project is to be completed as individual work, not as a team project. You may
discuss high-level questions, but do not share your code or your text with other students.

7

