
Lecture 6: Clustering

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 6

What we’ll learn today

I How to group documents into clusters by similarity

I How to evaluate clusters for quality

I The relationship between document and term clusters

Document clustering

Concept

I A “cluster” is a grouping of “similar” documents

I We can divide collection into (possibly overlapping) clusters

I Clusters can be hierarchical

I Hopefully, a cluster represents some common “meaning” or
“topic” or “class”

Uses

I Form of unsupervised classification of the collection

I Corpus organization and browsing (particularly if hierarchical)

I Corpus summarization

I Result diversification

Similarity

I Need a concept of document “similarity”

I Ideally one that will also generalize to cluster “similarity”

I Cosine similarity for document similarity
I Clusters represented either by:

I A representative (actual) document
I An “average” of the documents (mean pseudo-document)

both of which cosine similarity will handle

Clustering algorithm types

Three main types of clustering:

Agglomerative bottom-up (start with individual documents);
naturally hierarchical

Partitioning top-down; partition into top-level groups; can be
sub-partitioned

Hybrid combine or iterate both methods; a.k.a.
“scatter-gather”

Agglomerative clustering

1. Place documents as singleton clusters in C
2. Until |C| = 1:

2.1 Remove two most similar clusters c1, c2 from C
2.2 Join them in clusters cj = {c1, c2}
2.3 Place cj in C

I Creates hierarchy or (binary) “tree” of clusters

I Top of tree is whole collection

I Leafs of tree are documents

Computational considerations

Computational complexity

I Find most similar pair of documents: O(n2)

I n steps to create full hierarchy

I Potentially O(n3)

I . . . or higher, if comparing (non-singleton) clusters is expensive

Compare clusters

Cluster similarity could be compared by:

I Most similar documents (aka single-link clustering)

I “Mean” document

Cluster comparison by most similar

1. Calculate upper triangular matrix of distances between doc
pairs

2. For each doc save dn, record its nearest neighbour in P, going
from rows to columns of triangular matrix; |P| = n − 1.1

3. For n − 1 times:
3.1 Remove closest pair (c1, c2) from P
3.2 Create cj = {c1, c2}
3.3 For 〈ca, cb〉 ∈ P2

3.3.1 If ca = c1 or ca = c2:
3.3.2 Replace ca with cj
3.3.3 Else if cb = c1 or cb = c2:
3.3.4 Replace cb with cj

I O(n2) time complexity (for creating P)

I Can lead to poor clustering through “transitivity chains”
(think long, thin clusters joined up end-wise)

1Modified 2014-03-20 to clarify directional nature of paired relationships
2Corrected 2014-03-20 from original version, which incorrectly swapped the

order of the updated pairs in some conditions

Cluster comparison by mean

cluster mean Pseudo-document made by “averaging” all
documents in the cluster

I Mean can be found by:
I Averaging document vectors; or
I Concatenating documents and creating vector

I When clusters combined, new mean from combining vectors

I Because docvec is sparse (most cells empty), update is quick

I Algorithm as “most similar”, but update of P more expensive
(all neighbours of c1, c2 must be re-neighboured)

I Still O(n2)3

3Day and Edelsbrunner, “Efficient Algorithms for Agglomerative Hierarchical
Clustering Methods”, J. Clsf, 1984

Partition clustering

Concept

I Cluster at top level into (arbitrary) k clusters

I Can be sub-clustered (divide-and-conquer makes cheap)

Approach

I Select k documents “at random” as cluster seeds

I Assign documents to nearest center

I Iteratively improve centers, recluster

I Two implementations:

k medoid Center is always (most central) document
k mean After first iteration, center is mean

pseudo-document

k means clustering

1. Randomly select k seeds as centroids S = {s1, . . . , sk}
2. Until “convergence”:

2.1 Assign each document to cluster ci of nearest centroid si
2.2 Calculate new centroid si as mean of ci

I Relatively fast: O(k · n · r), where r is number of repeats (may
only require half-dozen or so) → O(n)

I Sensitive to choice of seed documents (different clusters for
different random seeds)

I Why is this not a complete disaster if seed documents are all
next to each other?

Agglomerative, partitioning: why not both?

I Agglomerative robust, but expensive (O(n2))

I Partitioning fast (≈ O(n)), but seed-sensitive
I Combine two methods4:

I Agglomerate sample of documents to pick good seeds
I Then use k-means to improve these seeds

Buckshot scatter-gather

I Randomly select
√
k · n documents

I Agglomeratively cluster them to k seeds (O(k · n))

I Run k means clustering algorithm on these k seeds

4Cutting, Karger, Pedersen, and Tukey, “Scatter/Gather: a cluster-based
approach to browsing large document collections”, SIGIR 1998

Term clustering

Idea

I Just as we can cluster documents by similarity in term space

I . . . we can also cluster terms by similarity in document space

Uses
Term clusters potentially useful as:

I Identification, representation of concepts

I Fast query expansion

Cluster representation

Representing clusters in a human-understandable way:

I Term clusters naturally represented using terms in the cluster
(somehow weighted)

I Document clusters not usefully represented by list of
documents

I Common document cluster representation is by high-weighted
terms

I For instance:
I Take (calculate) mean document
I Present highest-weighted (TF*IDF) terms in mean document

Co-clustering

Idea of representing document clusters by frequent term groups
alerts us to connection between term and document clusters

I Cluster of documents are those with frequently co-occurring
terms

I Cluster of terms are those that frequently co-occur in
documents

I Two-stage document clustering:
I First, create word clusters
I Then, represent documents by the word cluster occurrence
I Finally, cluster documents by word cluster

I Co-clustering (or bi-clustering)
I Algorithm clusters both documents and terms at same time
I Generally allow overlapping clusters

These ideas especially exploited in decomposition techniques (next
lecture) and topic modelling (later in semester)

Evaluating cluster quality

Cluster literature distinguishes between internal and external
evaluation:

Internal quality of separation of based on data itself

External compare to some external (human) standard cluster

These usually called “indices” rather than “metrics”

Internal evaluation

An internally “good” clustering will have two features:

Homogeneity Members of same cluster should be close

Separation Cluster should be far apart

Davies-Bouldin Index

σx average distance from member to centroid for cluster
x (measures homogeneity)

d(cx , cy) distance between centroids of clusters x and y
(measures separation)

n number of clusters

DB =
i

n

∑
i=1

nmax
i 6=j

(
σi + σj
d(ci , cj)

)
(1)

(Smaller values better)

Internal evaluation: is it circular?

I Internal evaluation violates IR evaluation rule:
I purely algorithmic evaluation metric is not useful
I must evaluate to human judgment

I However, computing a solution can be intractable
I . . . when verifying (evaluating) that solution may be tractable

I Think PvNP

I We can think of (say) DB as the aimed-at model

I Then valid to measure how close algorithms approach model

I Nevertheless, there is no “universal” objective function

I And different cluster algorithms will approximate different
objective functions

External evaluation

I Have human- (or other reliable-) labelled classes
I For example, labelled data set used for classifier evaluation

(such as RCV1v2 for text)

I Compare agreement between gold standard and clustering

Rand index

a Number of pairs of documents in same set in gold
standard G and in machine cluster M

b Num pairs in different sets for both G and M

c Num pairs in same set for G but different for M

d Num pairs in different sets for G but same for M

R =
a + b

a + b + c + d
(2)

Looking back and forward

Back

I Document clustering an extension of
document similarity to group
documents

I May be flat partitioning or hierarchical
clustering

I Intractability of creating “perfect”
clustering (even according to formal
model) leads to various heuristic or
approximate solutions

I Evaluation can then be both to the
theoretical model of cluster quality, or
to human perception

I Terms can also be clustered into (we
hope) “concepts”

I Natural interrelation between term
clusters and document clusters, can be
exploited in co-clustering

Looking back and forward

Forward

I Matrix decomposition methods (next
week) do a form of bi-clustering

I More general field of topic modelling
extends biclustering to identify
overlapping “topics” in a text

I Multi-class text classification is a kind
of clustering, but where the human
specifies the clusters

Further reading

I Cutting, Karger, Pedersen, and Tukey, “Scatter/Gather: a
cluster-based approach to browsing large document collections”5,
SIGIR 1998. Note only describes hybrid cluster methods, but also
the use of clustering as an information exploration tool.

I Aggarwal and Zhai, “A Survey of Text Clustering Algorithms”6, in
Aggarwal and Zhai (ed.), Mining Text Data, Springer, 2012.

I Manning, Raghavan, and Schutze, Chapters 16 (“Flat clustering”)7

and 17 (“Hierarchical clustering”)8, Introduction to Information
Retrieval, CUP, 2008.

5http://courses.washington.edu/info320/au11/readings/Week4.Cutting.et.al.1992.Scatter-
Gather.pdf

6http://www.charuaggarwal.net/text-cluster.pdf
7http://nlp.stanford.edu/IR-book/pdf/16flat.pdf
8http://nlp.stanford.edu/IR-book/pdf/17hier.pdf

	Agglomerative clustering
	Types of clustering
	Agglomerative clustering

	Partitioned and hybrid clustering
	Partitioning clustering
	Hybrid clustering

	Term clustering, biclustering, and cluster representation
	Term clustering

	Evaluating clustering
	Internal versus external evaluation
	Summary

