
Lecture 2: The Term-Document Matrix

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 1b



What we’ll learn today

I How to calculate a “similarity” between two documents

I Therefore, given a document, how to find the most similar
document to it in the corpus



Collection representation

I Each document is modelled as a “bag of words”

I That is, as a list of terms it contains, and the count of each
term

I The whole collection could be modelled as a “list of bag of
words”

I . . . but that fails to capture commonality of terms between
documents (which is the core to the text analysis tools we’ll
be looking at)



The term-document matrix (TDM)

I An alternative, and fruitful, model is of a “term–document
matrix” or TDM.

I Recall that a “matrix” is (in CS-speak) a two-dimensional
array, with rows and columns

I In the TDM, rows represent documents, columns represent
terms (in the collection vocabulary)

I Cell values are term frequency counts, or, more generally,
“score” attached to a term for a document



Example TDM

doc1 Two for tea and tea for two
doc2 Tea for me and tea for you
doc3 You for me and me for you

two tea me you

doc1 2 2 0 0
doc2 0 2 1 1
doc3 0 0 2 2



Geometrical interpretation of TDM

I The TDM is a handy conceptual representation (though, as
we’ll see later, not always a suitable implementation)

I But it also suggests a useful way of modelling and computing
with documents

I That is, by modelling documents as points (vectors) in
multi-dimensional term space



Matrix representation for points in 2-d space

Point x y

p1 2 0
p2 2 1
p3 0 2

●

●

●

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

x

y

p1

p2

p3

We can represent points in (abstract) 2d space using a matrix



Matrix representation for points in 3-d space

Point x y z

p1 2 0 2
p2 2 1 0
p3 0 2 0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0
0.5

1.0
1.5

2.0

x

y

z

●

●

●

p1

p2

p3

And similarly for points in 3d space (and higher dimensional space,
too, though it gets tricky to draw)



Documents in term space

I We can transfer the same model to modelling documents as
terms

I Each term (of the |T | terms in the vocabulary) becomes a
dimension

I The document’s position in the dimension of term t is
determined by sd ,t (score of term t in document d – for now,
just the term frequency)

I Each document becomes a point in |T |-d term space



Documents in term space

Point tea me two

doc1 2 0 2
doc2 2 1 0
doc3 0 2 0

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0
0.5

1.0
1.5

2.0

tea

m
e

tw
o

●

●

●

doc1

doc2

doc3

Like so



Document similarity as (inverse) distance

sim(doc1, doc2)
= −

√
(22 + 22 + 22)

= −
√

12

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

0.0
0.5

1.0
1.5

2.0

tea

m
e

tw
o

●

●

●

doc1

doc2

doc3

I We can then answer “how similar are two documents?” by
“how close are they in term space?” (e.g. by Euclidean
distance)

I Note that the computation extends trivially to multiple
dimensions (though again it’s difficult to visualize)



Document length bias

I Measuring literal distance between documents in term space
has problem:

I Documents with lots of terms will be further from origin . . .

I Documents with few terms closer to it . . .

I So we’ll find all short documents relatively similar . . .

I Even if they’re unrelated



“Long” documents

Point tea me two

doc1 2 0 2
doc2 2 1 0
doc3 0 2 0
doc4 5 0 7

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

tea

m
e

tw
o

●
●

●

●

doc1

doc2doc3

doc4

I Doc4, like Doc2, is all about “tea” and “two”.

I But because it is longer, it is in a space by itself.



Angular distance

I To avoid (“normalize” for) the length issue, we instead treat
the documents as “vectors”

I (that is, as lines from the origin to their locations in term
space)

I and then measure their similarity by the angle between the
vectors



Angular distance

Point tea two

doc1 2 2
doc2 2 0
doc4 5 7

●

●

●

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

tea

tw
o

doc1

doc2

doc4

I We see that Doc1 and Doc4 are indeed similar



Cosine distance

θ

1

cos θ

I In fact, what we measure is the cosine of the angle.
I Larger cosine = closer together (a similarity measure)
I All term values positive, so cosine always between [0, 1]
I Also, there’s a simple trick for calculating cosine easily



Calculating cosine distance

If we have two vectors, A and B, then the cosine between them is:

cos(A,B) =
A • B
|A| · |B|

(1)

where A •B is the “dot product” (explained next), and |A| and |B|
are the length of the vectors. In fact, if we normalize the vectors so
that they have unit length (i.e. they’re 1 unit long), as a = A/|A|
and b = B/|B|, then:

cos(A,B) = a • b (2)



Dot product

If we have two vectors (unit or otherwise):

a = 〈a1, a2, · · · , an〉 (3)

b = 〈b1, b2, · · · , bn〉 (4)

then their dot product is defined as:

a • b = a1 · b1 + a2 · b2 + · · ·+ an · bn (5)

That is, it is just the sum of the termwise multiplication between
elements.



Speeding up cosine computation

I All document vectors are stored normalized to unit length.

I Cosine distance can be quickly calculated as a summed series
of multiplications

I Only dimensions in which both elements are non-zero need to
be calculated

This (well, this whole line of geometric modelling) is known as the
vector space model)



Down-weighting common terms

I Terms that occur in a lot of documents tend to be less
discriminative than terms that appear in fewer

I For instance, the document “llama stories” is more
distinctively about llamas than it is about stories

I But (perversely) frequent terms can have more impact upon
similarity comparisons

I (they tend to “bend” the term space towards their dimension)



Inverse document frequency

I A commonly-used measure of a term’s discriminative power is
its inverse document frequency or IDF.

I If N is the number of documents in the corpus, and dft is the
number of documents that term t appears in . . .

I Then (under one formulation) the IDF of t is defined as:

idft = log
N

dft
(6)



TF*IDF

I The weight of a term’s appearance in a document is
frequently calculated by combining the terms frequency or TF
in the document with its inverse document frequency, or IDF.

wt,d = tfd ,t ∗ idft (7)

I This term–document score is known as TF*IDF, and is quite
widely used.



Sub-linear TF weighting

I The TF term in TF*IDF can be the raw term frequency, fd ,t
I However, a term that occurs 20 times is not generally 20

times as important as a term that occurs once.

I Therefore, an alternative formulation of the TF component is:

tfd ,t = log(1 + fd ,t) (8)

I Note there are lots of variant formulations and combinations!

I Whatever formulation is used, the unit-length-normalized
TF*IDF scores are the precomputed and stored, so that
similarity comparison is just a dot product



Memory space requirements

I The full term–document matrix is very large.

I Even a small collection (by modern standards) might have 1
million documents and 500,000 “terms”

I This would require 500 billion elements in the matrix

I Or 2TB of memory if each entry was 4 bytes in size



Sparseness of matrix

I Most of the entries in this term–document matrix will be
empty

I Because only a few terms appear in each document, and vice
versa

I Storing all the empty cells is wasteful (especially since they
contribute no value to the dot product similarity computation)

I Various “spare matrix” representations are possible

I . . . and these become highly specialized for query processing
(see later lecture)



Comparing terms in document space

I So far, we have considered comparing documents by
projecting them into term space

I But it is also possible to compare terms by projecting them
into document space

I What would it mean for a two terms to be “close” when
projected into document space?



Looking back and forward

Back

I We can interpet the TDM
geometrically, by projecting documents
into term space

I The distance between documents (or
more specifically, the cosine of the
angle between their vectors) is a
measure of similarity

I TF*IDF is a common scoring method
for the “weight” of a term in a
document (the document’s location in
that term’s dimension)

I Unit length normalization permits
calculation to be performed as a
simple vector dot product



Looking back and forward

Forward

I In the next lecture, we will look at
how to perform queries in the vector
space model (hint: treat the query as
a pseudo-document, and find what
[real] documents are close to it)

I After that, we will look at text
clustering, in which we automatically
group documents into “clusters” based
upon their closeness in the term space



Further reading

I Chapter 6, “Scoring, term weighting & the vector space
model”1, of Manning, Raghavan, and Schutze, Introduction
to Information Retrieval

I G Salton, A Wong, CS Yang, “A Vector Space Model for
Automatic Indexing”2, Communications of the ACM, 1975 (a
classic early presentation of the vector space model).

I J Zobel, A Moffat, “Exploring the Similarity Space”3, ACM
SIGIR Forum, 1998 (for a survey of all the different
combinations of TF, IDF, and normalizations then in use in
similarity computation; writte by two now-professors in our
department).

1http://nlp.stanford.edu/IR-book/pdf/06vect.pdf
2http:

//ecommons.library.cornell.edu/bitstream/1813/6057/2/74-218.ps
3http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.

6193&rep=rep1&type=pdf

http://nlp.stanford.edu/IR-book/pdf/06vect.pdf
http://ecommons.library.cornell.edu/bitstream/1813/6057/2/74-218.ps
http://ecommons.library.cornell.edu/bitstream/1813/6057/2/74-218.ps
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.6193&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.6193&rep=rep1&type=pdf

	The TDM and vector space
	A geometric interpretaion of the TDM
	Cosine distance

	Normalizations and complications
	IDF
	TF*IDF

	Practicalities
	Computational considerations
	Term similarity
	Summary


