
LBSC 690: Information Technology
Lecture 12

Software system development and
deployment

William Webber
CIS, University of Maryland

Spring semester, 2012

Spectacular software project failures

The Advanced Automation System project was
launched in the early 1980s and was originally
expected to cost $2.5 billion and be completed by
1996. But by 1994, estimated project costs had
soared to $7.6 billion and the project was seven years
behind schedule. The FAA terminated some parts of
the AAS program and restructured others, but $1.5
billion of spending ended up being completely wasted.

1http://www.downsizinggovernment.org/transportation/airports-atc

Spectacular software project failures

Last October [...] the giant British food retailer J
Sainsbury PLC had to write off its US $526 million
investment in an automated supply-chain
management system. It seems that merchandise was
stuck in the company’s depots and warehouses and
was not getting through to many of its stores.
Sainsbury was forced to hire about 3000 additional
clerks to stock its shelves manually.

1IEEE Spectrum, “Why Software Fails”, Sept. 2005

Spectacular software project failures

Senior managers at RMIT University botched virtually
every aspect of the implementation of a $47 million
software system that collapsed last year, an
Auditor-General’s report has found. The system will
have to be scrapped. [...]
The malfunctioning system corrupted financial records
and led to delays in issuing student cards and billing of
international students.
Auditor-General Wayne Cameron also said that
international student enrolments at RMIT dropped by
between 6 and 18 per cent last year as a result of the
debacle.

Software project failure rates

◮ 51% of companies implementing an ERP solution felt it
was unsuccessful (Robbins-Gioia, 2001)

◮ 40% of ERP implementations failed to achieve business
case within 1 year of going live (Conference Board Survey,
2001)

◮ 61% of projects failed amongst survey respondents
(KPMG Canada, 1997)

1http://www.it-cortex.com/Stat_Failure_Rate.htm

http://www.it-cortex.com/Stat_Failure_Rate.htm

Software project failure rates

Survey by Standish Group, 2009.

◮ 32% of projects delivered on time, on budget, with required
features

◮ 44% late, or over budget, or short on spec
◮ 24% failed and cancelled, or delivered but not used

1http://www.cbronline.com/news/software_project_failures_hit_5

http://www.cbronline.com/news/software_project_failures_hit_5_year_high_220609

Think carefully before starting

◮ Software development a risky business
◮ Do you really need to build this product?
◮ Is there an existing alternative?

Building software vs. building a bridge

6=

◮ Newness, unfamiliarity of technologies used
◮ Projects have high degree of uniqueness (software can

always be copied)
◮ Customer doesn’t really know what they want, or how the

system will in practice be used

Fred Brooks, “Mythical Man Month” (1975)

◮ Programmers are optimists, and
always underestimate time
required

◮ A constrained system is often a
better system (second system
effect)

◮ Programming tasks are
imperfectly fungible:

The bearing of a child takes
nine months, no matter how
many women are assigned.

Adding manpower to a late
software project makes it
later.

The “Ad-Hoc” (hobbyist) model

◮ The Heroic Age of
Software Development

◮ Just dive in to coding
. . . and struggle your
way out again

◮ Plays to image of the
“heroic programmer”,
who wrests the project
to completion by the raw
force of his brute
masculinity . . . or goes
down bravely with the
project if it fails

The “waterfall”

Requirements

Design

Implementation

Verification

Maintenance

◮ Follow strict order of
software development

◮ When moved to step
n + 1, cannot go back to
step n

◮ . . . except possibly for
iterating full process

◮ Term usually used
perjoratively

◮ . . . but model very widely
employed

1Wikipedia, “The Waterfall Model”

What the customer wanted...

◮ User may not know, be able to specify what they want in
requirements

◮ No mechanism for course-correction as project proceeds

The true waterfall

◮ The waterfall model doesn’t have a great reputation with
programmers

◮ Why?

1Attributed by Steve McConnell to Chris Kemerer

Agile development

◮ Iterative and incremental
software development

◮ Each iteration moves
through full (waterfall)
cycle

◮ Continuously develop
working software for
demonstration to client

◮ A family (or philosophy)
of methods, with many
formal implementations

1Wikipedia, “Agile software development”

Agile pros and cons

◮ Experience suggests Agile approach works well for
◮ Low-critical systems (tolerant to failure)
◮ Talented developers
◮ Small teams
◮ Frequently changing requirements

◮ But can also be euphemism for ad-hoc method
◮ Biggest problem (it seems to me): what goes in the

contract?

Free software: revenge of the hobbyist

◮ Hobbyist (amateur?) mindset: work on problems that
interest you (rather than from financial motivations)

◮ Open source: release source code of your projects, let
others freely download, correct, modify, and extend it

◮ Grew out of earlier, more dogmatic free software movement
(software should be free)

◮ Open-source model now employed by large companies
◮ Large inspiration behind wiki approach, too

Open-source projects

The Cathedral and the Bazaar

Open source as a different
model for software
development

◮ Fruitful chaos of (trading
in a) marketplace, rather
than hierarchical control
of (building a) cathedral

◮ Allow anyone to
contribute to a project

Convinced Netscape to
open-source Mozilla (now
Firefox)

Considering open-source

◮ In practice, seems (well-targeted) bug reports from the
open-source crowd more common than substantive code

◮ . . . though approach allows self-selection of dedicated
project contributors

◮ What is the business model? (though little money in selling
generic software these days)

◮ What if no-one is interested in the area?
◮ What does it mean for software-as-a-service?

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet
◮ On local server with

internet connection

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet
◮ On local server with

internet connection
◮ On dedicated hosting

machine in data center

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet
◮ On local server with

internet connection
◮ On dedicated hosting

machine in data center
◮ On shared host in data

center

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet
◮ On local server with

internet connection
◮ On dedicated hosting

machine in data center
◮ On shared host in data

center
◮ On virtual private server

Application deployment options

Where to run the software you have commissioned (purchased,
downloaded)?

◮ On client
◮ On local intranet
◮ On local server with

internet connection
◮ On dedicated hosting

machine in data center
◮ On shared host in data

center
◮ On virtual private server
◮ On “the cloud”

Cloud computing

What constitutes cloud computing?

◮ Buy computing as a utility, not as infrastructure
◮ Pool of shared resources, allocated on demand
◮ Provided at some “anonymous” remote data center or

centers

Three levels of cloud computing

Three varieties of cloud computing:

IAAS Infrastructure-as-a-service

PAAS Platform-as-a-service

SAAS Software-as-a-service

1Wikipedia, “Cloud computing”

Infrastructure as a service

◮ Provide raw (virtual) machines; user installs OS, software
◮ User charged on usage basis for:

◮ CPU minutes
◮ Disk space used
◮ Amount of I/O
◮ Network utilization

◮ Alternative to dedicated hosting
◮ For example, Amazon EC2,
http://aws.amazon.com/ec2/pricing/

http://aws.amazon.com/ec2/pricing/

Platform as a service

◮ Provide, charge for platform on (scalable) cloud
infrastructure:

◮ Web server
◮ Web programming runtime
◮ Database

◮ Alternative to shared hosting

Software as a service

◮ Provide software services (through browser) running
remote from client (often on cloud substratum)

◮ Charge by usage or by subscription
◮ Can be used to replace client applications

◮ E.g. gmail
◮ Can be used to replace locally installed, maintained

enterprise software
◮ E.g. salesfore.com customer relationship management

(CRM) software

Why cloud computing?

◮ Pay as (and what) you use rather than infrastructure
payment

◮ Lower costs through commoditization of resources,
services

◮ Supports variable workloads
◮ Outsources maintenance tasks

Why not cloud computing?

◮ Premium pricing
◮ Amazon EC2 storage charges 10c / GB / month, plus 10c /

million read/writes
◮ Purchase redundant disks for 25c / GB, transfers free

◮ If usage level stable, purchasing infrastructure may be
cheaper

◮ Concerns about loss of control of corporate, esp.
government, data

Summary

◮ Software development is risky
◮ Ad-hoc, waterfall, and agile development models
◮ Open source software as an alternative to proprietary

software
◮ Multiple options for application deployment
◮ Cloud computing: computing utility, not infrastructure

	Software development and management
	Software project failure rate
	Software development models
	Open-source software

	Application deployment
	Options for application deployment
	Cloud computing

