LBSC 690: Information Technology
Lecture 08
Developing Web Applications

William Webber
CIS, University of Maryland

Spring semester, 2012

Today'’s coverage

» Javascript in the browser (make user-page interactive)

» Server-side programming (last piece of the web-application
puzzle) (with PHP)

» AJAX (make page-server interactive)

Coverage depth

These are quite advanced topics; each worth a mini-course.
Today's scope:

» Get a feeling for features of each.

» Understand the architecture involved.

» Develop confidence in example-based development.
» Appreciate scope for projects.

Javascript in the browser

» Already seen that:

» Web browsers contain Javascript interpreters.
» We can run simple programs in them.

» Javascript code most useful when interacts with page and
user.

» Interaction relies upon two concepts:

1. Event-driven programming (code responds to user events)
2. The document object model (code is able to manipulate
web page)

Event-driven programming

» Without user interaction, Javascript programs mostly toys
— http://codalism.com/ ~wew/Ibsc690/auton.html

» To interact with user, Javascript must repond to
user-initiated actions or events:

» Clicks

Key presses

Mouse role-overs

Form submissions

v vYyy

» Later, we'll see that Javascript can also initiate, respond to
events from the server (arrival of new data, etc.)

http://codalism.com/~wew/lbsc690/auton.html

Events, HTML, and Javascript

<htmI>

<head>
<title>onClick() example</title>

</head>

<body>
<input type="button” value="Click.me!”

onClick="alert (’Stop.clicking.me!’) ">
</body>

</html>
» Events are captured by on[EVENT] attributes (e.g.
onClick, onMouseOver, etc.)

» Value of on[EVENT] is Javascript code that gets run when
the event occurs.

— http://codalism.com/ ~wew/Ibsc690/onclick.html

http://codalism.com/~wew/lbsc690/onclick.html

Interactive display

v

Event-driven programming gives interactivity user — page.

v

We want interactivity page — user.

While a page is being output, we can use document.write(™).
After it has already been complete, we need to modify it in
place.

That ability is offered by the Document Object Model
(DOM).

v

v

v

Document object model (DOM)

Root element:
<htrml=

Element: Element:

<heads> <hodys

Element; Artribute; Element: Element;

<titles “href” <ar <hlz

Text: Text: Text:

“My title” "My link” "My header”

» An HTML page can be represented as a “tree” (a kind of
graph):
» Elements are nodes
» Enclosed elements are children of enclosing elements
» The root element is <htmi>
» The DOM provides a fully general way to traverse and
manipulate the whole tree

» ...and therefore change the appearance, contents of the
page

getElementByld()

» The easiest way to access an HTML element through the
DOM

> ...is to give the element an id, say
» ...then access it via document.getElementByld("myid”)

innerHTML

<htmI>
<head>
<title>onClick() example</title>
</head>

<body>
<hl id="title ">[[SET ME]]</h1>
<input type="button” value="Foo”
onClick="document. getElementByld (' title ’).innerHTML.=.'Foo’; ">
<input type="button” value="Bar”
onClick="document. getElementByld (' title ’).innerHTML.=.'Bar’; ">
</body>

</ html>

» To access or change the text inside an element, reference
itS innerHTML property.

— http://codalism.com/ ~wew/Ibsc690/clickchange.html

http://codalism.com/~wew/lbsc690/clickchange.html

Element properties

<html><head><title>Image shifter</title></head>
<body>
<script language="javascript”>
function swimg(name) {
document. getElementByld ("image”).src = name;
}

<lscript>
<center>

</center>
<div style="height:.30px"> </div>
<center>
<img src="kitten.jpg” height="50px” onMouseOver="swimg (' kitten.jpg
<img src="owlet.jpg” height="50px” onMouseOver="swimg (' owlet.jpg ")

</center>
</body></html>

» Attributes of HTML element generally available as
properties of the DOM object

» Note use of function to handle extended or repeated code

— http://codalism.com/ ~wew/Ibsc690/imageshift.html

http://codalism.com/~wew/lbsc690/imageshift.html

Three-tier Web Application Development

Revisiting the three-tier web application

Presentation HTML, CSS, Javascript
Logic ??7?
Data RDBMS, SQL

We still have to fill in the “logic” layer.

Responsibilities of logic layer

In simple application, logic layer is responsible for coordinating
interaction between presentation (web pages) and data
(database), namely:

» Pulling information out of database, sending to display
(HTML)

» Taking information from display (HTML forms), entering
into database

More complicated logic is also possible (e.g. interacting with
other web services)

Implementing logic level

» Logic level runs (generally) on the server side:
» Closer to data
» Less code to download to client
» Can't trust client to run code securely
» To implement logic level, we need to program
» because programming is a systematic encoding of logic
» just as HTML is a systematic encoding of presentation
» and SQL is a systematic encoding of data (and its
manipulations)
» Web server must be equipped and configured to handle
server-side programming.
» The terpconnect server is not (apart from SSI)

PHP as server-side programming language

v

In theory, Javascript could be used for server-side
programming, too
In practice, for historical reasons, it is poorly suppoted for
general server-side web app development

» though it is gaining popularity in certain uses; see node.js
A much more popular server-side web programming
language is PHP
We're going to learn (to read) PHP by example (deep
breath!)

v

v

v

PHP in HTML

<html>
<head>
<title >Hello, world!</title >
</head>

<body>
<?php echo "Hello,._world!”; ?>
</body>
</html>

» PHP code can be embedded in HTML.

» (although it is more accurate to say that the HTML is
embedded in PHP)

» The embedded code goes in <?php ... 2>
» This code is executed when read by the PHP interpreter
» Note similarity to processing of SSI includes

— http://codalism.com/ ~wew/Ibsc690/helloworld1.php

http://codalism.com/~wew/lbsc690/helloworld1.php

Filesystem, server-side and client-side

<html>
<head>
<title >Hello, world!</title >
</head>

<body>
<?php echo "Hello,.world!”; ?>

<script language="javascript”>
document. write ("Goodbye, .world!")</script>
</body>
</html>

» The file sits on the server filesystem as above.

» Webserver reads file, invokes the PHP processor, which
replaces the <2php ... 2> expressions, on the server side.

» The HTML, with the Javascript embedded, is then sent to
the web browser.

» The web browser invokes the Javascript interpreter, which
execues the Javascript statement, on the client side.

— http://codalism.com/ ~wew/Ibsc690/helloworld.php

http://codalism.com/~wew/lbsc690/helloworld.php

From database to HTML

Server-side PHP program to display data from database has
following basic form:

1. Connext to database

2. Construct query in SQL

3. Submit query to database and read results

4. Write results out in HTML

From database to HTML

<htmI>
<head> <title >Drawing</title > </head>
<body>
<hl>Drawings </h1>

<table cellpadding="2px” border="1">

<tr>
<th>Title </th> <th>Student </th> <th>Date </th> <th>Image</th>
<ltr>
<?php
$db = mysql_connect(’'localhost’, 'william ', 'pw4william");
if (1$db) {
die ("Cannot.connect_.to.DBMS:." . mysql-error());

}
mysql_select-db ("william ', $db);

$qry = "SELECT.Drawing. title ,.Drawing.date_drawn,._.Drawing.url,_.Student.given,.”
"Student. family ..FROM.Drawing, .Student.WHERE_.Drawing . student_id=Student.id"”;
$res = mysql_query($qry);

while (($drawing = mysql_fetch_assoc($res))) {
>

<tr>
<td><?php echo $drawing[”title "]; ?></td>
<td><?php echo $drawing[”given”] . ".” . $drawing["family”]; ?></td>
<td><?php echo $drawing[”date.drawn”]; ?></td>
<td><img height="50px” src="<?php.echo.$drawing["url”];.2>"></td>
<ltr>
<?php } >
</table>
</body>
</html>

— http://codalism.com/ ~wew/Ibsc690/drawings.php

http://codalism.com/~wew/lbsc690/drawings.php

HTML forms

» User input in HTML through HTML forms
» <form > tag bounds form

» Contents of form given by <input > tags (<select > for
drop-down list; <textarea > for text)

» Each input has a name attribute

» When submitted, name:value pairs sent by browser to
server

HTML forms

<html>

<head>
<title >Add Drawing</title >

</head>
<body>
<h1l>Add Drawing</h1>

<?php if (!empty($error)) { echo $error

<form action="do_add_drawing.php” method="post">
Student id: <input type="text” name="student_id">

Title: <input type="text” name="title ">

Date drawn: <input type="text” name="date_drawn”>

URL: <input type="text” name="url" size="40">

<input type="submit”>
</form>

</body>
</html>

— http://codalism.com/ ~wew/Ibsc690/add_drawing.php

}

http://codalism.com/~wew/lbsc690/add_drawing.php

Browser to database

» Name:value pairs of form are made available to PHP script
in $.REQUEST object
» PHP script:

1. extracts form properties request
2. performs error checking

3. create SQL insert or update query
4. submits to database

Browser to database
<?php
$db = mysql_connect(’'localhost’, ’"william’, ’'pwd4william’);
$res = mysql_select.db (william ', $db);

if (empty($.REQUEST[" title 1)) {

$error = "You_must.supply._a_title!”;
include "add_drawing.php”;
exit;
}
$qry = "INSERT.INTO.Drawing.(title ,.student.id ,.date_.drawn,.url).”
"WALUES_.('" . mysgql.-real_escape.string ($.REQUEST[" title "])
"' ." . mysql.real_escape_string ($.REQUEST[" student_id"])
",.'" . mysqgl.real_escape_string ($.REQUEST["date_drawn”])
"2 . mysql.-real_escape.string ($.REQUEST["url”]) . "')";
$res = mysql_query ($qry);
if ('$res) {
die(”"Error_owith_query:.” . mysql-error ());
}
include "drawings.php”;
>

— http://codalism.com/ ~wew/Ibsc690/do_add_drawing.php

http://codalism.com/~wew/lbsc690/do_add_drawing.php

The request-response model

v

HTTP is a request-response mechanism
In traditional operation:

» The request was for a web page
» The response was the full web page

Every time the user and server want to interact, a new
page is loaded

» Becomes very clunky or impossible for interactive web
applications.

v

v

Beyond request-response

Alternative approach is AJAX (Asynchronous Javascript And
XML)

» Web page is loaded only once (with sizeable amount of
Javascript code)

» When data on page needs to change:

» Javascript in page sends request (over HTTP) to server for
new data

» Server sends response (to Javascript) containing data

» Javascript in page rewrites just the part of the page that is
updated

» Note that response comes to Javascript as an event
(“asynchronously”), rather than Javascripts waiting, to
maximize interactivity

AJAX example: Google Maps

Google Maps is an example of application written with AJAX.

In traditional request-response model
» Either whole page would have to change when scrolling,
zooming
» Or all map panes for entire world at every resolution would
have to be loaded when page loaded
In AJAX model

» Only map panes for initial location loaded immediately

» Newly required panes loaded on demand, when user
scrolls, zooms

AJAX example: Google search typeahead

Google search provides type-ahead suggestions

v

As you type, current query goes to backend server
Server calculates, send suggestions based on prefix
Browser adds these to suggestion list

Also, dynamically updates page with results for partial
query

Note that typing is not delayed, and results don’t appear
immediately.

v

v

v

	Introduction
	Javascript in the browser
	Server-side programming
	AJAX

