
Space-limited ranked query evaluation
using adaptive pruning

Nicholas Lester1, Alistair Moffat2, William Webber2, and Justin Zobel1

1. School of Computer Science and Information Technology
RMIT University, Victoria 3001, Australia

2. Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract. Evaluation of ranked queries on large text collections can be costly in
terms of processing time and memory space. Dynamic pruning techniques allow
both costs to be reduced, at the potential risk of decreased retrieval effectiveness.
In this paper we describe an improved query pruning mechanism that offers a
more resilient tradeoff between query evaluation costs andretrieval effectiveness
than do previous pruning approaches.

1 Introduction

Ranked query evaluation against a document collection requires the computation of a
similarity score for each document in the collection, and then the presentation of ther
highest-scoring documents, for some user-specified valuer. For an introduction to the
area, see Witten et al. [1999].

The most efficient way to evaluate such similarity formulations is to use a pre-
computedinverted index that stores, for each term that appears in the collection, the
identifiers of the documents containing it. Thepointers in the postings list for a term
also include any ancillary information that is required, such as the frequency of the term
in the document.Term-ordered query evaluation strategies take one term at a time, and,
for every document containing that term, incorporate the per-document contribution of
the term into the document’saccumulator, a temporary variable created during evalua-
tion of a query. However, in typical applications much of this computation is ultimately
wasted, as is a great deal of memory. For example, in web searching tasksr = 10 an-
swer documents are usually required, but a full set of accumulators on a collection of
N = 25,000,000 documents requires perhaps 100 MB, a non-trivial amount of space.

Querypruning heuristics seek to bypass some or all of the unnecessary computa-
tion, by eliminating low-scoring documents from answer contention at a relatively early
stage in the process. In this paper we examine query pruning heuristics that have been
proposed in previous literature, and show that, as the size of the document collection
grows, they have flaws that render them ineffective in practice. We then propose a new
adaptive pruning mechanism that avoids those failings. A target number of accumu-
lators is chosen beforehand; as each list is processed, existing low-scoring accumula-
tors are discarded and, depending on estimates of availablespace that are computed
adaptively, new accumulators can be added. The new mechanism allows relatively tight

control over the size of the set of accumulators, and at the same time provides a high
level of agreement between the pruned ranking and the equivalent unrestricted ranking.
The actual number of accumulators can be reduced to less than1% of the number of
documents without appreciable loss of effectiveness.

2 The quit and continue strategies

Using adocument-sorted index, the natural strategy for ranked query evaluation is to
process the lists corresponding to the query terms in turn, from shortest (describing
the rarest term) to longest (describing the commonest). Thesimilarity of a given docu-
ment is the sum of the contributions made by each of the query terms that occur in the
document. Each term potentially contributes a partial similarity to the weight of each
document in the collection; hence, because the postings lists are processed in term order
rather than document order, the partial similarities need to be stored in some temporary
form as the computation proceeds. As each postings list is processed, the accumulator
Ad is updated for each documentd that contains the term. Once all lists are processed,
the accumulators may be normalized by the document length. Then the topr values are
extracted for presentation to the user.

For a query involving a common term, a large proportion of theindexed documents
could be expected to end up with a non-zero accumulator, meaning that at face value
the most appropriate way to store them is in an array indexed by document numberd.
However, for large collections the processing of such an array is a severe bottleneck, as
its sheer size acts as an impediment to the simultaneous evaluation of multiple queries.
It is therefore attractive to limit the number of accumulators in some way using a query
pruning mechanism.

Probably the best-documented of the previous schemes are the quit andcontinue
methods of Moffat and Zobel [1996]. In thequit strategy, a target numberL of accu-
mulators is chosen. Initially the setA of accumulators is empty. Each postings listIt is
processed in turn; for each documentd ∈ It, if Ad is present in the setA it is updated,
otherwise a new accumulatorAd is created. At the end of each list, thequit strategy
checks whether the number of accumulators created so far exceedsL; if so, processing
is terminated. We call this thefull form of quit, as each list is completely processed.

A shortcoming ofquit-full is that the targetL may be dramatically exceeded by
the time the end of a list is reached. We refer to this asbursting the set of accumu-
lators. For example suppose thatL is 10,000, the first list contains1,000 entries, and
the second one contains1,000,000 entries – entirely plausible numbers in the context
of web queries on web data. Then the number of accumulators created will be around
1,000,000. An alternative is thepart form of quit, where the number of accumulators is
checked after every posting. The accumulator target will becomplied with in a strong
sense, but documents with higher ordinal identifiers are much less likely to be granted
an accumulator, and are thus much less likely to be returned as the answer to a query.

A greater problem is that withquit the more common terms will in many cases not
contribute to the accumulators at all, leading to substantial reduction in effectiveness
for smaller accumulator targets. This issue is addressed bythecontinue strategy. Once
the targetL is reached, no more accumulators can be created, but processing of postings

lists continues, so that existing accumulators are updated. With continue, much smaller
targets give reasonable effectiveness; Moffat and Zobel [1996] report thatcontinue-full
with L set to around 1%–5% of the total number of indexed documents gives retrieval
effectiveness (measured in any of the usual ways) not worse thanL = ∞.

We report experiments withcontinue-full in this paper, showing, in contrast, that it is
rather less successful. The difference in outcomes arises because some of the conditions
assumed in the earlier work no longer apply. In particular, the queries used by Moffat
and Zobel had dozens of terms (the work was completed in a universe in which web
search engines did not exist, document collections were maintained by editors, and
users had university degrees), which typically had a relatively broad mix offt values,
meaning that the likelihood of significant bursting was low.

The continue and quit strategies were not the first approaches used for pruning
ranked query evaluation. Earlier methods include those of Smeaton and van Rijsbergen
[1981], Buckley and Lewit [1985], Harman and Candela [1990], and Wong and Lee
[1993]; however, these approaches are not likely to be effective in the context of cur-
rent collections and system architectures. Other ranked query evaluation strategies are
based onfrequency-sorted indexes [Persin et al., 1996] andimpact-sorted indexes [Anh
et al., 2001]. These representations allow fast ranked querying, but Boolean querying
becomes harder to support. Inclusion of new documents is also complex. Hence, there
remain contexts in which it is appropriate to maintain postings lists in document-sorted
order. It is these environments that we assume in this paper.

3 A new approach: adaptive pruning

The objectives of any strategy for pruning the memory usage or computation of query
evaluation are threefold: it should treat all documents in the collection equitably; it
should be resistant to the “bursting” effect that was noted above; and at any given point
in time it should allocate accumulators to the documents that are most likely to feature
in the final ranking. Note, however, that compromise is necessary, since any scheme that
processes whole postings lists before changing state risksbursting, and any scheme that
makes significant state changes part way through a list cannot treat all documents eq-
uitably. The third requirement is also interesting. It suggests that a pruning mechanism
must be willing to rescind as well as offer accumulators to documents.

In our proposed strategy, postings lists are again processed in decreasing order of
importance, as assessed by the term weight component of the similarity heuristic. But
at the commencement of processing of the listIt for term t, a threshold valuevt is
estimated, as a lower limit on an accumulator contribution that needs to be exceeded
before any occurrence oft is permitted to initialize an accumulator.

When a pointer and accumulator coincide, a new accumulator score is computed,
by applying the update generated by that pointer. But no accumulator is retained inA
unless its value exceeds the current value ofvt, the numeric contribution that arises
from (for this term) a corresponding within-document frequency hurdle ofht. Thus
current accumulators that do not exceed the hurdle requirement are removed fromA in
the merge; new accumulators are created only if they have strong support indicated by
fd,t ≥ ht; and, even when a pointer updates a current accumulator, therevised value is

Algorithm 1 : Processing ranked queries
Input: a set of query termst, their document frequenciesft, their collection frequenciesFt, their
postings listsIt, and an accumulator limitL.

1: assignA← {}
2: for each termt, in increasing order ofFt do
3: useL, |A|, Ft, and the previous thresholdvt to establish an new thresholdvt

4: for each documentd in A ∪ It do
5: if d ∈ It then
6: calculate a contributionc usingFt andfd,t

7: else
8: assignc← 0
9: if d ∈ A then

10: assignc← Ad + c
11: if c ≥ vt then
12: assignAd ← c andA← A ∪ {Ad}
13: else if d ∈ A then
14: assignA← A− {Ad}
15: pause periodically to reevaluatevt, tracking the current size ofA, and the rate at which

it has been changing relative to the target rate of change

Output: a set of approximatelyL accumulator values, not yet normalized by document length

allowed to stay as a candidate only if it exceeds the currentvt. That is, the combination
of vt (as a similarity score) andht (as a correspondingfd,t threshold) act as a “scraper”,
that removes low-value candidates fromA and replaces them by any new high-valued
accumulators represented by the current list.

Algorithm 1 summarizes this process. The set of accumulators A andIt are both
lists sorted by document number, and are jointly processed in a merge-like operation.

The critical component is that of setting, for each term’s listIt, a minimum valueht

onfd,t scores that are to be allowed to create an accumulator. The thresholdht should
be set so that it changes as little as possible during the processing ofIt (the equity
principle); and so that at the end ofIt, the number of accumulators is reasonably close
to targetL (the principle of using the available accumulators wisely). Settinght (and
hencevt, which is directly related toht) too low means that too many new accumulators
will get created from termt, and not enough old ones get reclaimed, making the total
number of accumulators grow beyondL. On the other hand, settinght too high means
that plausible candidates fromIt get denied, and equally plausible candidates fromA
get unnecessarily discarded, resulting in a pool of fewer thanL candidates being made
available to the final ranking process. Another way of looking at vt is that as far as
possible it should be set at the beginning of the processing of It to a value that would
be equal, were no pruning at all taking place, to theLth largest of a complete set of
accumulators at the end of processingIt.

At the beginning of processing, if a term cannot possibly cause the accumulator
limit to be exceeded because|A| + ft ≤ L, thenht is set to one, and every document
in It without an accumulator is allocated one.

Algorithm 2 : Adaptively estimate the thresholding parameter for a term
Inputs: a set of accumulatorsA, a termt, and an accumulator targetL

1: assignstartA← |A|
2: assignp← ft/L
3: if this is the first term that risks exceedingL accumulatorsthen
4: assignht ← max{fd,t | d ∈ the firstp pointers inIt}
5: else
6: assignht to be thefd,t frequency corresponding to the previous value ofvt

7: assigns← ht/2
8: while pointers remain inIt do
9: process pointers through until thepth as described in Algorithm 1, usinght as a term

frequency threshold, and the correspondingvt as an accumulator value threshold
10: assignpredict ← |A|+ (ft − p)× (|A| − startA)/p
11: if predict > θL then
12: assignht ← ht + s and recalculatevt

13: else if predict < L/θ then
14: assignht ← ht − s and recalculatevt

15: assignp← 2p + 1
16: assigns← (s + 1)/2

Once the accumulator target is under threat by a term for which |A| + ft > L
(potentially even the first query term, ifft > L), a largerht is derived. If the entries
in each listIt were homogeneous, a sampling approach could be used to select ht,
and that value could be used for the whole list. Unfortunately, postings lists are rarely
homogeneous – term usage can change dramatically from one end of a collection to
another, and factors such as document length can also have a significant bearing.

Algorithm 2 shows an adaptive estimation process that addresses these problems.
The philosophy is that it is acceptable to adjustht as each list is being processed, pro-
vided that the bulk of each list is handled using values that do not differ too much; and
that, conversely, if big shifts inht become necessary, they should be made in such a
way that as few as possible of the list’s pointers are treatedunfairly. The objective is
to end the processing of this term withL accumulators. However it is impossible to
hit such a target exactly, so a toleranceθ is allowed, and any arrangement in which
L/θ ≤ |A| ≤ θL is tolerable. A typical value might beθ = 1.2.

In Algorithm 2 the first step is to record, using variablestartA, the number of ac-
cumulators at the commencement of processing this term. After some numberp of the
ft pointers inIt have been processed, the change in the size of the setA is clearly
|A| − startA. Extrapolating forwards over the remainingft − p pointers inIt allows
calculation of a quantitypredict, the number of accumulators expected if the remainder
of the list It is homogeneous with respect to the part already processed. If predict is
higher thanθL, it is time to increaseht andvt so as to reduce the rate at whichA is
growing; and, ifpredict is less thanL/θ, thenht andvt should be decreased.

Increases and decreases toht are by an amounts, which is initially large relative
to ht, but halves at each evaluation until it reaches one. At the same time, the intervals
p over whichht is held constant are doubled after each reevaluation. The initial interval

p is set toft/L, namely, the interval over which (ifIt were homogeneous) one accumu-
lator might expect to have been identified. Takinght to be the maximumfd,t identified
in the firstp pointers is thus a plausible initial estimate.

4 Evaluation methodology

The standard method for evaluating a retrieval mechanism isvia a controlled text col-
lection, a set of queries, and a set of partial or full relevance judgments that indicate
which of the documents are relevant to which query. For example the NIST TREC
project has created several such resources; seetrec.nist.gov. In addition, a range of
effectiveness metrics have been defined, with mean average precision (MAP) perhaps
the most widely used [Buckley and Voorhees, 2000]. In the experiments here we make
use of the 426 GB TREC GOV2 collection, which contains approximately25 million
web documents; and the short queries associated with query topics701–750. In terms of
scale, our experimentation is thus realistic of whole-of-web searching using a document
distributed retrieval system on a cluster of100 computers [Barroso et al., 2003].

Another interesting question that arises is how to count accumulators, and what
type of averaging is appropriate over a query stream. The obvious possibilities would
be to take the absolute maximum requirement over the stream;or to take the average
of the per-query maximums. But both of these have drawbacks,and do not accurately
reflect what it is that we wish to quantify, namely, the amountof memory in a parallel
query handling system that is required on average by each query thread. Instead, we
measure thetime-averaged accumulator requirement over the query stream, by tracking
the number of active accumulators throughout the processing, and disregarding query
boundaries. Queries that have a high accumulator load for anextended period are then
accurately counted, since they contribute through more of the time intervals.

5 Experiments

Table 1 shows the result of applying the two variants of thecontinue strategy to web-
scale data using short web-like queries, and compares theirperformance to the adaptive
pruning regime described in Section 3. The control knob in these experiments is the tar-
get number of accumulators, shown in the first column. The next three pairs of columns
show respectively thecontinue-part mechanism, thecontinue-full mechanism, and the
new method. The time-averaged number of accumulators used for the continue-part
combination is always within the target (and less than the target is some cases because
some queries cannot support even20,000 accumulators), so in that sensepart is a useful
technique. But the loss of retrieval effectiveness compared to full evaluation is acute.
We also experimented with the twoquit versions, and confirmed that they are faster, but
yielded even worse effectiveness scores for the same level of accumulator usage.

The next pair of columns demonstrate why the retrieval is so bad with part – the
actual number of accumulators required just to equitably complete the processing of
the boundary term is enormously bigger than the accumulatortarget. That is, in thepart
strategy only a small fraction of the boundary term gets processed before the target is
reached, and documents early in the collection are greatly favored. On the other hand,

Target
continue-part continue-full adaptive pruning

(’000)
Actual

MAP
Actual

MAP
Actual

MAP
(’000) (’000) (’000)

1 1.0 0.045 237.9 0.235 1.5 0.150
2 2.0 0.065 238.9 0.235 3.2 0.179
4 4.0 0.093 252.4 0.235 5.8 0.202

10 10.0 0.126 260.3 0.235 13.0 0.215
20 19.9 0.142 372.1 0.235 26.5 0.228
40 39.8 0.141 478.7 0.235 47.7 0.233

100 98.5 0.170 533.7 0.235 121.1 0.237
200 194.1 0.194 599.9 0.237 214.7 0.239
400 373.8 0.212 1,590.6 0.239 395.5 0.240

1,000 845.3 0.221 2,862.0 0.240 900.0 0.240

Table 1. Retrieval effectiveness scores, using TREC topics701–750 (short queries) the GOV2
collection, retrieval depthr = 1,000, and a language model with Dirichlet smoothing [Zhai and
Lafferty, 2004]. Numbers reported are mean average precision (MAP), and the time-averaged
number of accumulators required to process the query stream. A full evaluation of each query
leads to a MAP of0.240.

fully processing the boundary term can give good retrieval effectiveness – especially
with thecontinue strategy – but causes the accumulator set to burst.

The final pair of columns show the new method. In all cases the time-averaged ac-
cumulator requirement is close to the target valueL. More interesting is the retrieval
performance – with as few as100,000 accumulators, just0.4% of the size of the collec-
tion, very goodMAP results are obtained.

Figure 1 shows the same data graphically, but with average memory space pre-
sented as a ratio of accumulators to documents in the collection. The two variants of
thecontinue approach provide bookends to performance, with thefull version requiring
very large numbers of accumulators, irrespective of the target L, but providing high
effectiveness; and thepart version tightly bounding the number of accumulators, but
sacrificing retrieval effectiveness as measured byMAP.

6 Conclusions

The adaptive pruning method presented here combines the strengths of the twocontinue
approaches and eliminates their weaknesses, in that the number of accumulators can be
reasonably controlled to a specified target, and for a given accumulator consumption,
retrieval effectiveness is excellent. Adaptive query pruning is a useful technique that
allows memory usage to be tightly controlled, even when carrying out search operations
on web-scale document collections.

Acknowledgment. This work was supported by the Australian Research Council.

References

V. N. Anh, O. de Kretser, and A. Moffat. Vector-space rankingwith effective early termination.
In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editors, Proc. 24th Annual International

0.01 0.10 1.00 10.00

Accumulators (% of documents in collection, time-averaged)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
av

er
ag

e
pr

ec
is

io
n

adaptive pruning
cont-full
cont-part

Fig. 1. Efficiency-effectiveness tradeoffs in different pruning techniques. The new adaptive prun-
ing approach provides a clearly superior combination of high retrieval effectiveness with accurate
management of memory use.

ACM SIGIR Conference on Research and Development in Information Retrieval, pages 35–42,
New Orleans, LA, Sept. 2001. ACM Press, New York.

L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google cluster architecture.
IEEE Micro, 23(2):22–28, Mar. 2003.

C. Buckley and A. F. Lewit. Optimization of inverted vector searches. InProc. 8th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 97–110, Montreal, Canada, June 1985. ACM Press, New York.

C. Buckley and E. M. Voorhees. Evaluating evaluation measure stability. In N. J. Belkin, P. In-
gwersen, and M.-K. Leong, editors,Proc. 23rd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 33–40, Athens, Greece, Sept.
2000. ACM Press, New York.

D. K. Harman and G. Candela. Retrieving records from a gigabyte of text on a minicomputer
using statistical ranking.Journal of the American Society for Information Science, 41(8):
581–589, Aug. 1990.

A. Moffat and J. Zobel. Self-indexing inverted files for fasttext retrieval.ACM Transactions on
Information Systems, 14(4):349–379, Oct. 1996.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with frequency-sorted in-
dexes.Journal of the American Society for Information Science, 47(10):749–764, Oct. 1996.

A. Smeaton and C. J. van Rijsbergen. The nearest neighbour problem in information retrieval. In
C. J. Crouch, editor,Proc. 4th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 83–87, Oakland, California, May 1981. ACM
Press, New York.

I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

W. Y. P. Wong and D. K. Lee. Implementations of partial document ranking using inverted files.
Information Processing & Management, 29(5):647–669, Sept. 1993.

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to informa-
tion retrieval.ACM Transactions on Information Systems, 22(2):179–214, Apr. 2004.

