Space-limited ranked query evaluation
using adaptive pruning

Nicholas Lester, Alistair Moffat2, William Webbe?, and Justin Zobél

1. School of Computer Science and Information Technology
RMIT University, Victoria 3001, Australia

2. Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract. Evaluation of ranked queries on large text collections candstly in
terms of processing time and memory space. Dynamic pruetiiniques allow
both costs to be reduced, at the potential risk of decreatadval effectiveness.
In this paper we describe an improved query pruning mechattist offers a
more resilient tradeoff between query evaluation costsratribval effectiveness
than do previous pruning approaches.

1 Introduction

Ranked query evaluation against a document collectionimegjthe computation of a
similarity score for each document in the collection, and then the presemtafither
highest-scoring documents, for some user-specified valier an introduction to the
area, see Witten et al. [1999].

The most efficient way to evaluate such similarity formwas is to use a pre-
computednverted index that stores, for each term that appears in the collectian, th
identifiers of the documents containing it. Theinters in the postings list for a term
also include any ancillary information that is required;tsas the frequency of the term
in the documentlerm-ordered query evaluation strategies take one term at a time, and,
for every document containing that term, incorporate thedeeument contribution of
the term into the documenté&cumulator, a temporary variable created during evalua-
tion of a query. However, in typical applications much ostbomputation is ultimately
wasted, as is a great deal of memory. For example, in webliegriasks- = 10 an-
swer documents are usually required, but a full set of act¢atons on a collection of
N = 25,000,000 documents requires perhaps 100 MB, a non-trivial amourpace.

Querypruning heuristics seek to bypass some or all of the unnecessaryutamp
tion, by eliminating low-scoring documents from answertention at a relatively early
stage in the process. In this paper we examine query prumngdtics that have been
proposed in previous literature, and show that, as the dileeodocument collection
grows, they have flaws that render them ineffective in pcactiVe then propose a new
adaptive pruning mechanism that avoids those failings. A target number ofiimce
lators is chosen beforehand; as each list is processedingxisw-scoring accumula-
tors are discarded and, depending on estimates of avasphlee that are computed
adaptively, new accumulators can be added. The new meaohali@vs relatively tight

control over the size of the set of accumulators, and at threedane provides a high
level of agreement between the pruned ranking and the dgotuanrestricted ranking.
The actual number of accumulators can be reduced to lesslbaof the number of
documents without appreciable loss of effectiveness.

2 Thequit and continue strategies

Using adocument-sorted index, the natural strategy for ranked query evaluatiow is t
process the lists corresponding to the query terms in tuom fshortest (describing
the rarest term) to longest (describing the commonest) sirhidarity of a given docu-
ment is the sum of the contributions made by each of the qeenys that occur in the
document. Each term potentially contributes a partial lsirity to the weight of each
documentin the collection; hence, because the postirtgslis processed in term order
rather than document order, the partial similarities neduktstored in some temporary
form as the computation proceeds. As each postings lisbisgssed, the accumulator
Ay is updated for each documehthat contains the term. Once all lists are processed,
the accumulators may be normalized by the document lengtim The top- values are
extracted for presentation to the user.

For a query involving a common term, a large proportion ofititeexed documents
could be expected to end up with a non-zero accumulator, imgdmat at face value
the most appropriate way to store them is in an array indeyetbbument numbetf.
However, for large collections the processing of such aayag a severe bottleneck, as
its sheer size acts as an impediment to the simultaneousagizal of multiple queries.

It is therefore attractive to limit the number of accumutatim some way using a query
pruning mechanism.

Probably the best-documented of the previous schemes ergithand continue
methods of Moffat and Zobel [1996]. In thwiit strategy, a target numbér of accu-
mulators is chosen. Initially the sdtof accumulators is empty. Each postings lisis
processed in turn; for each documént I;, if A, is presentin the sed it is updated,
otherwise a new accumulatal, is created. At the end of each list, tiqait strategy
checks whether the number of accumulators created so faedsE; if so, processing
is terminated. We call this thall form of quit, as each list is completely processed.

A shortcoming ofquit-full is that the targef. may be dramatically exceeded by
the time the end of a list is reached. We refer to thidasting the set of accumu-
lators. For example suppose thais 10,000, the first list containg ,000 entries, and
the second one containgd00,000 entries — entirely plausible numbers in the context
of web queries on web data. Then the number of accumulateagedt will be around
1,000,000. An alternative is th@art form of quit, where the number of accumulators is
checked after every posting. The accumulator target wiltdraplied with in a strong
sense, but documents with higher ordinal identifiers aremtegs likely to be granted
an accumulator, and are thus much less likely to be retura#iteaanswer to a query.

A greater problem is that withuit the more common terms will in many cases not
contribute to the accumulators at all, leading to substhntiduction in effectiveness
for smaller accumulator targets. This issue is addressdldduontinue strategy. Once
the targefl is reached, no more accumulators can be created, but pinge$postings

lists continues, so that existing accumulators are upd#tét continue, much smaller
targets give reasonable effectiveness; Moffat and Zol@6) report thatontinue-full
with L set to around 1%-5% of the total number of indexed documewés getrieval
effectiveness (measured in any of the usual ways) not whese/t = co.

We report experiments wittontinue-full in this paper, showing, in contrast, that it is
rather less successful. The difference in outcomes aressgise some of the conditions
assumed in the earlier work no longer apply. In particulz, queries used by Moffat
and Zobel had dozens of terms (the work was completed in a&rs&vin which web
search engines did not exist, document collections werataiaed by editors, and
users had university degrees), which typically had a redgtibroad mix off; values,
meaning that the likelihood of significant bursting was low.

The continue and quit strategies were not the first approaches used for pruning
ranked query evaluation. Earlier methods include thoseneds&8on and van Rijsbergen
[1981], Buckley and Lewit [1985], Harman and Candela [1920id Wong and Lee
[1993]; however, these approaches are not likely to be &@feen the context of cur-
rent collections and system architectures. Other rankedycgyvaluation strategies are
based orfrequency-sorted indexes [Persin et al., 1996] aimdpact-sorted indexes [Anh
et al., 2001]. These representations allow fast rankedyigerbut Boolean querying
becomes harder to support. Inclusion of new documentsascalsplex. Hence, there
remain contexts in which it is appropriate to maintain pagsilists in document-sorted
order. It is these environments that we assume in this paper.

3 A new approach: adaptive pruning

The objectives of any strategy for pruning the memory usagmmputation of query
evaluation are threefold: it should treat all documentshi@ tollection equitably; it
should be resistant to the “bursting” effect that was noteala; and at any given point
in time it should allocate accumulators to the documentsatemost likely to feature
in the final ranking. Note, however, that compromise is ng&gs since any scheme that
processes whole postings lists before changing statelniskéing, and any scheme that
makes significant state changes part way through a list ¢dread all documents eq-
uitably. The third requirement is also interesting. It seisfg that a pruning mechanism
must be willing to rescind as well as offer accumulators towoents.

In our proposed strategy, postings lists are again prodessgecreasing order of
importance, as assessed by the term weight component oftilariy heuristic. But
at the commencement of processing of the lisfor term ¢, a threshold value;, is
estimated, as a lower limit on an accumulator contributltat needs to be exceeded
before any occurrence ofs permitted to initialize an accumulator.

When a pointer and accumulator coincide, a new accumulatoeds computed,
by applying the update generated by that pointer. But noraatator is retained id
unless its value exceeds the current value,ofthe numeric contribution that arises
from (for this term) a corresponding within-document freqay hurdle ofh;. Thus
current accumulators that do not exceed the hurdle reqeineare removed from in
the merge; new accumulators are created only if they hawagsupport indicated by
fat > he; and, even when a pointer updates a current accumulataevised value is

Algorithm 1: Processing ranked queries

Input: a set of query termss their document frequencigf, their collection frequencieg:, their
postings listd;, and an accumulator limit.

1: assignd — {}

2: for each ternt, in increasing order of; do

3: useL, |A|, Fi, and the previous threshold to establish an new threshaold
4: for each documeniin AU I, do
5 if d € I then
6: calculate a contribution using Fx and fq +
7 else
8: assignc — 0
9: if d € Athen
10: assigre «— Aq + ¢
11: if ¢ > v then
12: assigndy — candA — AU {Ag}
13: elseif d € Athen
14: assignd «— A — {A4}
15: pause periodically to reevaluatg tracking the current size of, and the rate at which

it has been changing relative to the target rate of change
Output: a set of approximatelly accumulator values, not yet normalized by document length

allowed to stay as a candidate only if it exceeds the currerithat is, the combination
of v; (as a similarity score) antg (as a corresponding; : threshold) act as a “scraper”,
that removes low-value candidates frofrand replaces them by any new high-valued
accumulators represented by the current list.

Algorithm 1 summarizes this process. The set of accumuadoand I; are both
lists sorted by document number, and are jointly processacierge-like operation.

The critical component is that of setting, for each ternssli, a minimum valuéh;
on fq; scores that are to be allowed to create an accumulator. Téshibldh, should
be set so that it changes as little as possible during theepsawy of/; (the equity
principle); and so that at the end ff the number of accumulators is reasonably close
to targetL (the principle of using the available accumulators wise8gttingh, (and
hencev;, which is directly related té;) too low means that too many new accumulators
will get created from terni, and not enough old ones get reclaimed, making the total
number of accumulators grow beyohdOn the other hand, settirig too high means
that plausible candidates frofp get denied, and equally plausible candidates ftdm
get unnecessarily discarded, resulting in a pool of fewan fhcandidates being made
available to the final ranking process. Another way of logkat v, is that as far as
possible it should be set at the beginning of the procesdirdgto a value that would
be equal, were no pruning at all taking place, to flte largest of a complete set of
accumulators at the end of processipg

At the beginning of processing, if a term cannot possiblyseathe accumulator
limit to be exceeded becausé| + f; < L, thenh, is set to one, and every document
in I; without an accumulator is allocated one.

Algorithm 2 : Adaptively estimate the thresholding parameter for a term
Inputs: a set of accumulators, a term¢, and an accumulator targét
1: assigrstartA — |A|
2: assigrp « fi/L
. if this is the first term that risks exceedifigaccumulatorshen
assign; < max{fa,: | d € the firstp pointers inl, }
else
assign. to be thef,,; frequency corresponding to the previous value;of
assigns — h/2
: while pointers remain id; do
process pointers through until tieh as described in Algorithm 1, using as a term
frequency threshold, and the correspondipgs an accumulator value threshold
10: assigrpredict < |A| + (f: —p) x (|A| — startA) /p
11: if predict > 6L then

w

©ooNDaR

12: assigm: <— h: + s and recalculate;
13: elseif predict < L/0 then
14: assigrh, — h; — s and recalculate,

15: assigmp «— 2p+1
16: assigns — (s +1)/2

Once the accumulator target is under threat by a term forlwhi¢ + f; > L
(potentially even the first query term, ff > L), a largerh; is derived. If the entries
in each listl; were homogeneous, a sampling approach could be used ta Bglec
and that value could be used for the whole list. Unforturyat@stings lists are rarely
homogeneous — term usage can change dramatically from @hefemcollection to
another, and factors such as document length can also haysificant bearing.

Algorithm 2 shows an adaptive estimation process that addsethese problems.
The philosophy is that it is acceptable to adjusts each list is being processed, pro-
vided that the bulk of each list is handled using values toatat differ too much; and
that, conversely, if big shifts ifh; become necessary, they should be made in such a
way that as few as possible of the list's pointers are treatddirly. The objective is
to end the processing of this term withaccumulators. However it is impossible to
hit such a target exactly, so a tolerarttés allowed, and any arrangement in which
L/0 < |A| < 6L is tolerable. A typical value might bie= 1.2.

In Algorithm 2 the first step is to record, using varialtartA, the number of ac-
cumulators at the commencement of processing this terrer Atme numbey of the
f+ pointers inl; have been processed, the change in the size of thd setlearly
|A| — startA. Extrapolating forwards over the remainiffg— p pointers inl; allows
calculation of a quantitpredict, the number of accumulators expected if the remainder
of the list I; is homogeneous with respect to the part already procedsprkdict is
higher thardL, it is time to increasé; andv; so as to reduce the rate at whighis
growing; and, ifpredict is less than./6, thenh; andv; should be decreased.

Increases and decreaseshitoare by an amount, which is initially large relative
to h., but halves at each evaluation until it reaches one. At threesame, the intervals
p over whichh;, is held constant are doubled after each reevaluation. Tt interval

pis settof;/L, namely, the interval over which (f were homogeneous) one accumu-
lator might expect to have been identified. Takingo be the maximunf; , identified
in the firstp pointers is thus a plausible initial estimate.

4 Evaluation methodology

The standard method for evaluating a retrieval mechanisriaia controlled text col-
lection, a set of queries, and a set of partial or full releeajudgments that indicate
which of the documents are relevant to which query. For exartipe NIST TREC
project has created several such resourceg;see.nist . gov. In addition, a range of
effectiveness metrics have been defined, with mean averagesion (MAP) perhaps
the most widely used [Buckley and Voorhees, 2000]. In theseirpents here we make
use of the 426 GB TREC GOV2 collection, which contains appnately 25 million
web documents; and the short queries associated with quapg701-750. In terms of
scale, our experimentation is thus realistic of whole-@hwearching using a document
distributed retrieval system on a clusterléf) computers [Barroso et al., 2003].

Another interesting question that arises is how to countiaedators, and what
type of averaging is appropriate over a query stream. Theab\possibilities would
be to take the absolute maximum requirement over the streato;take the average
of the per-query maximums. But both of these have drawbaciddo not accurately
reflect what it is that we wish to quantify, namely, the amaefmhemory in a parallel
query handling system that is required on average by eacty guead. Instead, we
measure théme-averaged accumulator requirement over the query stream, by tracking
the number of active accumulators throughout the procgsaimd disregarding query
boundaries. Queries that have a high accumulator load fextamded period are then
accurately counted, since they contribute through morbefite intervals.

5 Experiments

Table 1 shows the result of applying the two variants ofdtwatinue strategy to web-
scale data using short web-like queries, and comparestbdormance to the adaptive
pruning regime described in Section 3. The control knob @séexperiments is the tar-
get number of accumulators, shown in the first column. The thege pairs of columns
show respectively theontinue-part mechanism, theontinue-full mechanism, and the
new method. The time-averaged number of accumulators wsetthe continue-part
combination is always within the target (and less than thgetas some cases because
some queries cannot support e28rD00 accumulators), so in that seng#t is a useful
technique. But the loss of retrieval effectiveness compéoeull evaluation is acute.
We also experimented with the tvgpit versions, and confirmed that they are faster, but
yielded even worse effectiveness scores for the same Ieaetomulator usage.

The next pair of columns demonstrate why the retrieval is &b With part — the
actual number of accumulators required just to equitabmmete the processing of
the boundary term is enormously bigger than the accumukatget. That is, in thpart
strategy only a small fraction of the boundary term gets @ssed before the target is
reached, and documents early in the collection are greattyréd. On the other hand,

Target continue-part continue-full adaptive pruning

, Actual Actual Actual

('000) (000) MAP ('000) MAP (000) MAP
1 1.0 0.045 237.9 0.235 1.5 0.150
2 2.0 0.065 238.9 0.235 3.2 0.179
4 4.0 0.093 252.4 0.235 58 0.202
10 10.0 0.126 260.3 0.235 13.0 0.215
20 19.9 0.142 372.1 0.235 26.5 0.228
40 39.8 0.141 478.7 0.235 47.7 0.233
100 98.5 0.170 533.7 0.235 121.1 0.237

200 194.1 0.194 599.9 0.237 2147 0.239
400 373.8 0.212 1,590.6 0.239 3955 0.240
1,000 8453 0.221 2,862.0 0.240 900.0 0.240

Table 1. Retrieval effectiveness scores, using TREC tofies-750 (short queries) the GOV2
collection, retrieval depth = 1,000, and a language model with Dirichlet smoothing [Zhai and
Lafferty, 2004]. Numbers reported are mean average poeci@AP), and the time-averaged

number of accumulators required to process the query strAdll evaluation of each query
leads to a MAP 01).240.

fully processing the boundary term can give good retrieffeictveness — especially
with the continue strategy — but causes the accumulator set to burst.

The final pair of columns show the new method. In all casesithe-averaged ac-
cumulator requirement is close to the target valueMore interesting is the retrieval
performance — with as few 460,000 accumulators, jusi.4% of the size of the collec-
tion, very goodvIAP results are obtained.

Figure 1 shows the same data graphically, but with averageanespace pre-
sented as a ratio of accumulators to documents in the doltecthe two variants of
thecontinue approach provide bookends to performance, witHfthersersion requiring
very large numbers of accumulators, irrespective of thgetak, but providing high
effectiveness; and thgart version tightly bounding the number of accumulators, but
sacrificing retrieval effectiveness as measuretisy.

6 Conclusions

The adaptive pruning method presented here combines drggiis of the twaontinue

approaches and eliminates their weaknesses, in that thieerwhaccumulators can be
reasonably controlled to a specified target, and for a givenraulator consumption,
retrieval effectiveness is excellent. Adaptive query jmgris a useful technique that

allows memory usage to be tightly controlled, even whenyiagrout search operations
on web-scale document collections.

Acknowledgment. This work was supported by the Australian Research Council.

References

V. N. Anh, O. de Kretser, and A. Moffat. Vector-space rankivith effective early termination.
In W. B. Croft, D. J. Harper, D. H. Kraft, and J. Zobel, editdPsoc. 24th Annual International

—7/— adaptive pruning
—@—— cont-full
—l— cont-part

Mean average precision

0.00 T T T T
0.01 0.10 1.00 10.00

Accumulators (% of documents in collection, time-averaged)

Fig. 1. Efficiency-effectiveness tradeoffs in different prunieghniques. The new adaptive prun-
ing approach provides a clearly superior combination dfilnegrieval effectiveness with accurate
management of memory use.

ACM S GIR Conference on Research and Development in Information Retrieval, pages 35-42,
New Orleans, LA, Sept. 2001. ACM Press, New York.

L. A. Barroso, J. Dean, and U. Holzle. Web search for a plafie¢ Google cluster architecture.
IEEE Micro, 23(2):22-28, Mar. 2003.

C. Buckley and A. F. Lewit. Optimization of inverted vectaasches. IrProc. 8th Annual
International ACM S GIR Conference on Research and Devel opment in Information Retrieval,
pages 97-110, Montreal, Canada, June 1985. ACM Press, Néw Yo

C. Buckley and E. M. Voorhees. Evaluating evaluation meastability. In N. J. Belkin, P. In-
gwersen, and M.-K. Leong, editof8roc. 23rd Annual International ACM S GIR Conference
on Research and Development in Information Retrieval, pages 33-40, Athens, Greece, Sept.
2000. ACM Press, New York.

D. K. Harman and G. Candela. Retrieving records from a giggby§ text on a minicomputer
using statistical ranking.Journal of the American Society for Information Science, 41(8):
581-589, Aug. 1990.

A. Moffat and J. Zobel. Self-indexing inverted files for faskt retrieval. ACM Transactions on
Information Systems, 14(4):349-379, Oct. 1996.

M. Persin, J. Zobel, and R. Sacks-Davis. Filtered documetnieral with frequency-sorted in-
dexes.Journal of the American Society for Information Science, 47(10):749-764, Oct. 1996.

A. Smeaton and C. J. van Rijsbergen. The nearest neighbobiepn in information retrieval. In
C. J. Crouch, editoRroc. 4th Annual International ACM S GIR Conference on Research and
Development in Information Retrieval, pages 83-87, Oakland, California, May 1981. ACM
Press, New York.

I. H. Witten, A. Moffat, and T. C. Bell Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

W. Y. P. Wong and D. K. Lee. Implementations of partial docatranking using inverted files.
Information Processing & Management, 29(5):647—-669, Sept. 1993.

C. Zhai and J. Lafferty. A study of smoothing methods for laexge models applied to informa-
tion retrieval. ACM Transactions on Information Systems, 22(2):179-214, Apr. 2004.

