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Abstract There are several ways in which an
“improved” technique for solving some computational
problem can be defended: by mathematical argument;
by simulation; and by experimental validation. Each
of these has risks. In this paper we describe some of
the issues that arose during an experimental validation
of architectures for distributed text query evaluation,
and the approaches that were taken to resolve them. In
particular, collections and clusters must be scaled in
a way that maximizes comparability between different
data sizes; query sets must be appropriate to the target
collection; and hardware issues such as file placement
on disk must also be considered. Our intention is to
report on our experience in a practical sense, and
thereby assist others to avoid the same problems.

1 Introduction
There are several ways in which an “improved” tech-
nique for solving some computational problem can be
defended: by mathematical argument; by simulation;
and by experimental validation. Each of these has risks.
For example, a mathematical analysis might be erro-
neous, or might apply only for impossibly large prob-
lem domains, or might be predicated on a model of
computation that does not reflect actual computer hard-
ware. Similarly, a simulation might be flawed because
it fails to account for some aspect of the real-world be-
havior that is being modeled.

In this paper we describe some of the issues
that arose during an experimental validation of
architectures for distributed text query evaluation, and
the approaches that were taken to resolve them. The
issues discussed are “real”, in the sense that each of
them turned out to be a major impediment to accurate
measurement in a set of experiments that we were
running, but had not been anticipated at the time the
experiments were initially planned. In particular, we
found that collections and clusters must be scaled in a
way that maximizes comparability between different
data sizes; query sets must be appropriate to the target
collection; and hardware issues such as file placement
on disk must also be considered.
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Our intention is to report on our experience in a
practical “warts and all” sense. In our paper describ-
ing the new query distribution technique (now being re-
viewed [Moffat et al., 2005]), we simply stated how the
experiments had been run, as if thatmodus operandi
had always been the intention. The reality is somewhat
different, and our experimental validation took more
than a year longer than originally planned, and required
a complete rethink of both the software we were testing
and also what it was we were planning to measure. We
hope that in admitting to our experiences we can inform
others planning experimental validations, and thereby
assist them to avoid the same problems. Readers who
benefit from this commentary might also be interested
in the work of Zobel et al. [1996].

2 The challenge
Two standard architectures for distributed text query
evaluation are described in the literature. Indocument
partitioning, each node in the cluster indexes a
different subset of the collection’s documents. The
central receptionist distributes each query to all of the
nodes; and each node evaluates the query against its
local index, returning the results to the receptionist.
The receptionist merges these results and returns
them to the user. Interm partitioning, each node
handles a subset of the index’s vocabulary. Queries
are evaluated centrally by the receptionist, using
index information supplied by the relevant nodes.
Previous experimental investigations [Tomasic and
Garcı́a-Molina, 1993, Jeong and Omiecinski, 1995,
Ribeiro-Neto and Barbosa, 1998, Cahoon et al., 2000,
Badue et al., 2001] had been inconclusive, and we had
been engaged in debate as to which method provided
superior performance. A new evaluation strategy –
denotedpipelining – emerged out of that debate, and
late in 2003 we set in motion plans to test all three
strategies. The pipelined mechanism again makes use
of a term-partitioned index, but the evaluation state is
shipped between cluster nodes, and each node holding
information about a query participates in the evaluation
of that query.

A key goal of the experiments was that the testing
should be under conditions approximating that of a
large-scale, real-world search engine, in accordance



with the position we had already argued for previously
[Moffat and Zobel, 2004]. The results should not
only probe the potential of our new architecture; they
should also conclusively demonstrate the relative
merits of document and term partitioning, and settle
the arguments we had engaged in.

The uni-processingZettair text retrieval engine
(available fromhttp://www.seg.rmit.edu.au) was
used as a basis for the experiments, with code added
to implement each of the distributed architectures. We
wanted to explore scalability in two directions: as the
number of nodes in the cluster increased; and as the
size of the collection grew. Cluster scalability would
be investigated by performing runs on one, two, four,
and eight machines, and comparing query throughput
rates. Similarly, collection scalability would be pro-
vided through the use of standard TREC collections of
different sizes,GOV, wt100g, andGOV2, being respec-
tively 18 GB, 100 GB, and426 GB in size. Using these
three data sets also had the (as it turned out, specious)
attraction of testing the systems on different types of
collection. To emphasize the practical nature of the ex-
periments, we chose a convenient real-world query log,
the publicExcite97 log. Finally, to eliminate startup
effects, the first twenty thousand queries were taken
from the log, but timings were taken against the second
group of ten thousand rather than the whole set.

With this setup in place, we ran our experiments,
got interesting results that made the pipelining strat-
egy look good (and simultaneously exposed the term-
partitioning approach as being hopeless), wrote every-
thing up, submitted a paper, and got rejected. In retro-
spect, most of the reasons given by the referees were
appropriate, but as always in such a situation, we felt
somewhat disheartened.

Other tasks then intervened; when we returned to
the investigation a couple of months later, it was with
new hardware, a new version of theZettair engine,
and with added instrumentation in the software to allow
more data to be collected. These changes incorporated,
the experiments were re-run, the presentation revised to
include the new data, and the paper re-submitted (to a
different venue).

Two weeks later a casual corridor conversation led
to the quite shocking realization that there was a major
problem with the experiments (described in more detail
below), and we withdrew the second submission before
– we hope – too much editorial and reviewing effort had
been invested in it.

Determined to make our third attempt the last,
we re-thought and redesigned the experiments, and
checked all of the outputs carefully. But there were
several more iterations of design needed, of both
software and experiment, before we recently submitted
(again) the paper describing the pipelined approach
to distributed retrieval. In all, this saga took nearly
two years from conception to completion, involved a
surprisingly steep learning curve, and taught us several

hard lessons about designing and running experiments
on distributed systems. Our purpose in writing this
paper is to describe the path that was followed, the
ways in which flaws in the initial experiments were
uncovered, and then the ways they were eventually (we
believe) rectified.

3 Homogeneous data
The first issue for reflection was the decision to use
three different collections to explore the manner
in which the distribution architectures scaled with
collection size. At face value, use of three collections
of different sizes allows both exploration of scale
effects, and also exploration of different types of data.
In particular,GOV andGOV2 are both derived from US
government web-sites, albeit a couple of years apart
(the former in 2002, the latter in 2004). On the other
hand,wt100g is quite different. It was crawled from
the general web in 1997, and was (at least by intent)
restricted to HTML pages, whereas the government
crawls include many long PDF files. That is, as well
as being different in size, the three collections had
different subject matter and document length.

Viewing these additional differences as a chance to
kill two investigative birds with one experimental stone
was misguided. A key tenet of experimental investiga-
tions is to know which attributes are being varied, and
which attributes should be fixed, perhaps temporarily,
or perhaps permanently. An obvious corollary is to then
ensure that in any given experiment only one parameter
is being varied, thereby “keeping it simple, stupid”. By
simultaneously mixing data types and collection sizes
in our first set of experiments, we were unable to dis-
tinguish between alternative possible effects, and were
led to erroneous conclusions.

In the subsequent experiments the two smaller col-
lections were dropped. Instead, fractional collections
were created by extracting slices out ofGOV2. This
had the benefit of also allowing for sub-collections to
be sized in the exact ratios required, important when
investigating the effect of (for instance) doubling both
the number of nodes and the size of the collection.

Sub-collection extraction does, however, need to be
undertaken with care. It would be wrong, for instance,
to create a half collection by simply taking the first half
of the documents in theGOV2 repository. This would
ignore the way that web crawls proceed, starting from
top-level seed documents, and proceeding to deeper,
more obscure ones, and would not have created a
sub-collection that was homogeneous with respect to
the main one. This is particularly the case withGOV2,
where all the PDFs are stored at the end. Instead, to
make a1/nth sub-collection we selected everynth file
of the27,204 files making up theGOV2 collection.

We have chosen to present the main themes of this
paper as a sequence of “morals”. We begin with this
simple one, blindingly obvious, but, nevertheless, one
we lost sight of:



Moral: When testing a system, only vary the things
that need to vary. Fix everything else.

4 Appropriate query set
Our initial experiments used theExcite97 query log
[Jansen et al., 1998, Spink et al., 2001], which had
the benefits of being publicly available and widely
known. More importantly, it was attractive because it
was “real”.

However, we subsequently found that theExcite97

log was a poor fit with theGOV2 collection which we
used for the main experiments, for two reasons: first,
it was collected in 1997, whereasGOV2 was crawled in
2004; and secondly, it is from a whole-of-web search
engine, whereas theGOV2 collection is confined to US
government web pages and documents. The mismatch
means that many of the queries refer to information
and resources that government web sites are unlikely to
provide. The five most popular queries inExcite97are
“sex”, “ yahoo”, “ chat”, “ playboy”, and “porn”; the
most popular multi-word queries, “princess diana”
and “chat rooms”.

From an efficiency point of view, the semantic rel-
evance of the queries to the indexed collection is not
terribly important. On the other hand, it is important
that the queries have the right statistical properties. In
particular, “inappropriate” queries can be processed at
quite different throughput rates to “appropriate” ones,
especially if “inappropriate” means “without many an-
swers in the collection”. Individual query terms in an
inappropriate log may be much less frequent in the col-
lection than those in an appropriate log, and there may
be many fewer matching answers.

Fortunately, thewt10g TREC corpus does match
theExcite97 query log, and can be used to gauge term
statistics in the web as a whole. Thewt10g collection is
a10 GB subset extracted from the100 GB wt100g col-
lection, with attention paid to ensuring coherence and
document quality. Thewt100g collection was crawled
in 1997, and the documents were taken from the web
as whole, not restricted to a particular set of domains.
In terms of both date and domainwt10g is thus a good
match forExcite97.

Term
Collection

wt10g GOV2

“sex” 1.87 1.39
“free” 13.59 6.70
“nude” 0.20 0.01
“pictures” 2.54 0.60
“pics” 0.23 0.02

Table 1: Collection frequencyft as a percentage of the
number of documents in the collection, for the TREC
collectionswt10g andGOV2, and the five most frequent
terms in theExcite97 query log.

Table 1 shows the five most frequent query terms in
the Excite97 log and compares their occurrence fre-
quencies inwt10g andGOV2. In all cases, the terms
are less common inGOV2 than inwt10g, ranging from
two-thirds to a twentieth of the frequency. This dis-
crepancy means that, proportional to collection size, the
Excite97 log should execute faster against theGOV2
collection than against thewt10g collection. To test
this hypothesis, we extracted a slice of theGOV2 col-
lection with the same number of documents aswt10g,
and ran10,000 Excite97 queries against it. The query
stream took16% longer againstwt10g than against the
GOV2 slice, confirming that the first set of experiments
in which we applied the “real”Excite97 queries to the
“real” GOV2 collection were probably biased.

In one sense,16% is not that great a difference, and
it could be argued that using the same queries in all
runs is sufficient to guarantee fairness. However, Ta-
ble 1 points to another characteristic of collection inap-
propriateness that was particularly relevant to our dis-
tributed experiments. Consider the notion ofworkload,
the amount of work a term imposes upon the system
during processing of a query set. Workload is the prod-
uct of the term’s frequency in the query set and its fre-
quency in the collection, the latter measured concretely
as the length (in bytes) of the term’s inverted list in the
index. That is, ifl(t) is the length of the term’s inverted
list in the index, andfq(t) is the number of times that
term occurs in the query set, then the term’s workload
is given byw(t) = l(t) × fq(t), and its proportional
workload by

w(t)
∑

t∈TQ
w(t)

whereTQ is the vocabulary of the query stream. Since
both collections and query sets have a skewed term fre-
quency distribution, the workload of a query set’s vo-
cabulary should also be skewed.

The term “free” is the second most common term
in the query log; occurs in almost a seventh ofwt10g

documents; and around half as frequently inGOV2. But
for the10,000 Excite97 queries being used in the ex-
periments, “free” is the most workload intensive term,
and generates6.2% of the total workload for thewt10g
collection, compared to3.4% for GOV2.

The importance of workload skew in retrieval ex-
periments should not be underestimated. Two of the
three methods we were considering in our experiments
involved partitioning the index between nodes by terms.
Higher term workload skew means less evenness on av-
erage between partitions, which means in turn poorer
distribution of processing workload between nodes. We
eventually discovered that poor balancing of workload
between nodes was the biggest problem in the pipelined
system [Moffat et al., 2005].

Table 2 examines the issue of workload balancing in
a term-partitioned system (such as pipelining). To cre-
ate the table, the same sequence of10,000 queries was
extracted from theExcite97 log. The query term vo-



Collection Query set 4 8 16
wt10g Excite97 1.209 1.455 1.943
GOV2 Excite97 1.171 1.356 1.684
GOV2 synq 1.205 1.452 1.941

Table 2: The ratio of maximum partition workload to
the mean partition workload for different numbers of
partitions, using10,000 random vocabulary partition-
ings, and10,000 queries.

cabulary defined by those10,000 queries was then ran-
domly partitioned across four, eight, and sixteen pro-
cessors. The total workload at each node during a run of
the10,000 queries was measured, first againstwt10g,
then againstGOV2 (the third row is explained later). Fi-
nally, from this data the ratio of the most heavily loaded
node to the mean of all nodes was computed. The fig-
ures given in Table 2 are the averages of these ratios
over a set of10,000 different random term partition-
ings. For example, withk = 4 processors, on average
a random vocabulary partitioning ofwt10g resulted in
one of the processors having an assigned workload (in
a term-distributed sense) that was nearly21% greater
than the average across the four processors.

In a term-partitioned system the most heavily
loaded node is likely to become a bottleneck. Table 2
demonstrates, first, that the problem of workload
imbalance grows as the collection is split into more
parts; and second, that the imbalance grows more
quickly when the query set is appropriate for the
collection than when it is not. Use of an inappropriate
query stream in our first set of experiments led us
to erroneous conclusions about the scalability of the
pipelining regime we were testing.

Moral: Mixing real-world data with inappropriate
real-world queries may yield artificial outcomes.

5 Synthetic queries
BecauseGOV2 was the only large collection available,
we had no choice but to persist in using it. In the ab-
sence of a matching query set – the log from a US gov-
ernment search engine would have been very useful –
we decided to generate a synthetic query set that was
statistically “appropriate” toGOV2.

Randomly generating queries is a fraught exercise.
Consider, for example, a method that uniformly selects
terms from the available vocabulary. Such a method
would produce only incidental skew in the query term
frequency distribution, and result in relatively balanced
workload across the partitions. In particular, the median
frequency of a term in the collection is small compared
to the median collection-frequency of terms in typical
query sets.

Synthetic query generation is nothing new in dis-
tributed information retrieval research. However, previ-
ous methods have been based on one of two unsatisfac-
tory frequency distribution models. The first model is

exactly the uniform distribution considered in the previ-
ous paragraph [Badue et al., 2001, Tomasic and Garcı́a-
Molina, 1993, Jeong and Omiecinski, 1995]. The sec-
ond model incorporates skew; however, the skew is usu-
ally based upon the frequency of terms in thecollec-
tion, either by directly following that distribution [Ca-
hoon et al., 2000], or by ranking according to collection
frequency then fitting to a Zipf distribution [Jeong and
Omiecinski, 1995]. However, this is also unsatisfactory,
since the correlation between term frequency in natural
query logs and term frequency in document collections
is relatively weak [Baeza-Yates, 2005]. More generally,
there is a problem with attempting to fit query term fre-
quency distributions to models like Zipf’s law, even if
the ranking and coefficient are based upon natural query
logs. It is well understood that, though such power-law
models may fit the bulk of the distribution quite well,
they often fail to fit its extremes [Baeza-Yates, 2005].

Other work on distributed text query evaluation has
used queries created by hand as part of standard query
sets used for retrieval effectiveness tasks, such as those
published by TREC [Ribeiro-Neto and Barbosa, 1998,
Badue et al., 2001]. However, such query sets are very
short, typically being composed of only 50 queries –
hardly enough to allow the system to even get warmed
up. Also, having been hand-crafted by people expe-
rienced in information retrieval, they tend to employ
a more discriminating (and therefore lower-frequency)
vocabulary than do natural query logs.

After considering these alternatives, we set four
desiderata, in decreasing order of importance: (1)
the query term frequency distribution should be
appropriate for the collection; (2) the collection term
frequency distribution should be appropriate; (3) the
query length distribution should be appropriate; and
(4) the query term co-occurrence distribution should
be appropriate. Query coherence (or meaning) was
not an important requirement, and because we were
working with bag-of-word queries (and not phrase
queries), it mattered little if the generated queries were
nonsensical to human readers.

To meet the four requirements, a query translation
method was developed based on term frequency. Real-
world queries from theExcite97 log were translated
on a term-by-term basis, by finding target terms in the
target collection with similar frequencies to those of the
source terms in thewt10g collection.

Supposing thatC′ is a target collection for which
queries are required, the details are as follows. The re-
quired inputs are an existing query setQ and a source
collectionC for whichQ is appropriate. As before,TQ

is the set of terms occurring inQ; and|C| and|C′| are
defined to be the number of documents inC andC′.
Similarly, TC′ is taken to be the set of terms occurring
in C′. For eacht ∈ TQ, a translation termt′ ∈ TC′

is picked such thatft/|C| ≈ ft′/|C
′|, whereft′ is the

term frequency inC′. This simple process maintains



“spice sex” ⇒ “contra vhs”
“cartoon art” ⇒ “proposition claims”

“star trek” ⇒ “especially eliminated”

Figure 1: Sample query translations, converting
Excite97 queries applied towt10g (on the left) to syn-
thetic equivalents applied toGOV2. For example, the
term “sex”, which occurs in1.87% of wt10g docu-
ments but only1.39% ofGOV2 documents, is translated
to “ vhs”, which occurs in1.78% ofGOV2 documents.

identical query length and query term frequency distri-
butions betweenQ andQ′.

To additionally preserve workload characteristics
and term co-occurrence rates, the translation process
was performed one query at a time. For eachq ∈ Q,
there were some termst1 . . . ti that already had
translationst′1, . . . , t

′

i, and othersti+1 . . . tx that did
not. To find a binding forti+1, a sequence of possible
matching terms with the right collection frequency was
explored. If the conjunctive Boolean query

∧x

j=1
tj

had no matches inC, then any suitable set of bindings
was assigned toti+1 . . . tx. On the other hand, if∧x

j=1
tj had a non-empty answer set inC, then at least

three and as many as seven possible bindings fort′i+1

were explored, and the one with the most answers to∧i+1

j=1
t′j in C′ chosen. This continued until either all

terms in the query had mappings, or until no non-empty
target query was uncovered after seven attempts to find
a term binding, at which point the remaining terms
were assigned any mapping of the right collection
frequency.

The synthetic query setQ′ generated by this pro-
cess is referred to assynq. Figure 1 shows three of
the queries insynq and their original forms, and illus-
trates the fact that the translated queries generally do
not make semantic sense. However, in conjunction with
GOV2 they do match the source query set as it applies to
wt10g in all of the statistical aspects that we are con-
cerned with for our experiments. The last row of Ta-
ble 2 measures the term-partitioned workload skew for
synq on GOV2, and exhibits the same pattern of values
as does the row that measures skew for theExcite97

queries onwt10g.

6 Careful scaling
Once the data and queries had been fixed, the next issue
we grappled with was how exactly to structure exper-
iments so that we correctly isolated scale as a factor –
one of the hypotheses we sought to test was that pipelin-
ing was “more scalable” than document distribution.

In a uni-processing environment, scalability is es-
tablished by working with increasing amounts of data,
and measuring query throughput (or some related at-
tribute such as average elapsed time). A strategy can
claim to “scale well” if, when normalized by the data
volume, the throughput rate stays steady or decreases.
For example, if a throughput ofX queries per second is

possible onG gigabytes of data, then a scalable system
should deliverX/10 queries per second (or more) on
10G GB of data.

In a distributed experiment, it is tempting to apply
scale incorrectly, and to seek to verify that if one ma-
chine can attainX queries per second onG GB of data,
thenk machines can attainkX queries per second on
G GB. In fact, the correct experiment is to applyk ma-
chines tokG GB and establish that the rate ofX queries
per second can be maintained in the face of data growth.
At face value these are the same experiment, but there
is a subtle difference between the two. When the num-
ber of processors changes, and the volume of data is
held fixed, other effects can intrude. For example, thek
machines also havek times as much memory, meaning
that a greater fraction of the index can be in memory.

Indeed, if k machines cannot processkG GB at
X queries per second, and one machine can process
kG GB atX/k queries per second, then distribution is
a failure, since ak-way mirrored system is superior.

In our final set of experiments withGOV2 we were
careful to work with homogeneous fractions of the col-
lection, and measured query throughput rates using one
processor and1/8th of the collection, two processors
and1/4 of the collection, four processors and1/2 of
the collection, and eight processors with all of the col-
lection, so as to correctly identify the effects of scale.

Moral: When testing that a process is scalable, be
sure that you know what you are actually measuring.

The scaling strategy described in the previous sec-
tion led to another uniformity issue to do with the me-
chanics of the query engine. TheZettair system uses
a dynamic thresholding scheme that limits the num-
ber of accumulators used during processing, in order to
bound the amount of query-time memory needed [Mof-
fat and Zobel, 1996, Lester et al., 2005]. Limiting mem-
ory use is important if throughput is to be maximized,
since many concurrent query threads are likely to be
active at any given time. In preliminary experiments
with a monolithic system we had found that a limit of
L = 100,000 accumulators was sufficient withGOV2 to
achieve a high level of retrieval effectiveness (measured
using average precision over a fixed query set, relative
to an unrestricted run).

Initially, we applied this limit to each processing
node. However, this was unfair to the document-
partitioned system. It was forced to maintainkL
accumulators system-wide during its (parallelized)
processing of each query, compared toL for (se-
rialized) pipelining. That is, we were placing the
baseline system at an unfair disadvantage. To be fair
to the document-partitioned architecture, the per-node
accumulator limit should be set atL/k, which then
raises the question as to how retrieval effectiveness
behaves. Unfortunately, by this stage we were using
synthetic queries, and were unable to assess retrieval
effectiveness. Instead, we quantified the extent to



which the rankings varied from each other using a
dissimilarity metric. Additional experiments then
justified the correctness of the scaled-accumulator
approach; and ak-processor document-partitioned
split of GOV2 with a 100,000/k per-node accumulator
limit yielded almost exactly the same rankings as a
monolithic system with a100,000 limit.

The second way in which accumulator limits might
be scaled is with the size of the collection. When the
collection size halves, the targetL might also be halved.
Again, it came down to the effectiveness results; and in
this case, they were more equivocal. The answer rank-
ings (to depthr = 1,000) did change if the accumula-
tor limit was decreased in proportion to the size of the
collection; however, the difference was slight (by the
normalized dissimilarity measure, roughly6% for the
smallest collection). This relatively small decrease in
effectiveness was acceptable, given the need for consis-
tency in the experiments.

Moral: If in doubt, make choices in a manner that
least disadvantages the attribute of the baseline

system against which you most wish to compare.

7 Disk placement
As the various inputs to the experiments were refined,
variability in the timing results became apparent. The
largest index was16 GB, and the cluster machines each
had1 GB of main memory. Overall performance was
thus dependent on the performance of disk reads, and
the variability we were observing seemed in some way
connected with disk attributes.

Disk performance is primarily affected by two fac-
tors: the degree to which the stored data is fragmented
into groups of blocks or “extents”; and the physical lo-
cation on disk of those extents. Fragmentation causes
delays as the disk head seeks from one extent to an-
other; the greater the distance between the fragments,
the greater the delay. And disk platters rotate at a con-
stant speed, so a disk head takes the same amount of
time to complete a rotation at the rim of the platter as
it does at its spindle; but more blocks are held per cir-
cumference at the rim than at the spindle, due to the
greater radial area. It turned out that on the disks we
were using, the read-speed ratio between rim-near and
spindle-near blocks was around7:4.

Our initial experiments had been done on machines
with a single220 GB partition for experimental data
that was shared with other active users. In particular,
it was not practicable to keep it empty of data for the
many months of our experiments. The large partition
size made our experiments subject to wide variability
in disk read speeds between runs; and the presence of
other data on disk made file fragmentation more likely.
As a result, our initial results suffered from significant
I/O-related variability. For example, the system run-
ning the full GOV2 index on a single machine could

spend anywhere between5% and25% of its time wait-
ing for disk. This20% difference in effective process-
ing capacity led in turn to a similar difference in system
throughput, masking the effects we were trying to mea-
sure. The I/O variance is especially problematic in a
situation such as ours, where the measurements of ne-
cessity involve different files of different sizes.

Our first approach to solving this issue was to
pre-allocate “storage areas” by creating a number of
4 GB files filled with null bytes on every machine, then
reusing these files for each experiment by writing the
index data into their existing blocks. In UNIX terms,
this means opening the files for writing without setting
theO TRUNC flag. (Anrcp replacement that behaved in
this way was developed.) Each time a given index was
loaded onto a server, it was then guaranteed to be in the
same location. It was not a sufficient solution in itself,
however, and did not guarantee that indexes of different
sizes received equivalent placement. As an extreme,
imagine a file where the first2 GB were contiguous and
rim-wards, but the remaining2 GB were fragmented
across small extents close to the spindle: a2 GB
index and a4 GB index written into such a storage
space would have very different read performance. In
addition, file pre-allocation also does not guarantee that
the storage spaces on different machines are equivalent.

Storage pre-allocation and reuse, therefore, is
not in itself sufficient; that storage space must also be
similarly located on different systems, and substantially
contiguous in each case. Actually getting equivalent
file allocations across different machines, particularly
on very large, partially-full partitions, then became
a hit-and-miss process of iteratively creating files,
finding ones with similar-looking block locations
and reasonable contiguity, and then verifying their
equivalence by timing tests – a rather tedious and
time-consuming process.

Moral: Make sure that the baseline system and the
system being compared against it are given equal

access to resources.

Having battled to create appropriate storage spaces,
we decided that such a process could hardly represent
either experimental best-practice or a practical example
to others, and in the end we adopted another solution.

The final method we used to control disk location
variability was to re-partition all of the disks, and on
each machine create a partition just a little larger than
the largest index. Constraining the size of the exper-
imental partition meant that the range of possible file
locations, and therefore disk read speeds, was similarly
constrained. We placed this partition in the fastest sec-
tion of available disk space, which is also the section
of disk with the most blocks per circumference, and
hence the smallest speed difference between contiguous
blocks. With a dedicated experimental partition, it was
then possible to always copy indexes into an initially
empty partition.



Moral: If performance is to be repeatable, disk
partitions should be kept as small as possible, and

should be empty at the start of each run.

Even with all this preparation, we found that XFS,
the filesystem we were using, had some peccadilloes
that surprised. The first was that even on an empty
disk, it does not always write files contiguously, but
sometimes leaves moderately sized gaps. (Block allo-
cations under XFS filesystem can be retrieved with the
xfs_bmap(8) utility.) We therefore automated our in-
dex installation tool to check the block allocations, and
recopy the files if they contained a gap beyond a certain
tolerance (we used0.5 GB). This step could be omitted
by experimenters less embittered about the whole issue
than we were by this stage. As for most modern filesys-
tems, there is no filesystem editor available for the XFS
filesystem, nor is there any way to force particular block
allocations for a given file.

A second peculiarity of XFS’s behavior was that it
regarded the first block of the partition to be adjacent to
the last, and if it started a large file towards the end of
a partition, would “contiguously” place the rest of the
file at the start of the partition. Moreover, if files and
directories were iteratively created and deleted, (which
was our initial procedure with indexes), each new di-
rectory’s files were placed closer to the spindle than the
previous directories files, until the end of the partition
was reached and the addresses wrapped around. The
result was that, over a set of experiments, a sequence
of more-or-less contiguous indexes was created, inter-
spersed at regular intervals with a single maximally-
gapped one. We discovered this behavior via puzzling
cyclical breakdowns in performance over sets of runs.

To counterbalance these annoyances, XFS does
have a more useful trait: if all the files in a directory are
deleted, but not the directory itself, then any new files
created in that directory are located starting at the same
block offset as the old ones. We exploited this behavior
by creating a couple of dozen directories on each node,
and in each directory, creating a file holding a single
byte. The directory with the file in the rim-closest
block was retained; the remainder were deleted. Then,
for all of the experiments, index files were copied into
that directory, and accessed via symlinks.

Moral: You may need to become intimately
acquainted with the behavior of your disk drive.

During the sequence of extensive timings we dis-
covered one more problem that threatened our sanity –
the disk on one of the nodes was4.5% slower than the
disks on the other seven. This was despite the fact that
all nodes were purchased at the same time in a single
order and with supposedly identical configurations. We
contemplated deliberately placing the data partition on
this disk in a more rim-ward location than on the other
nodes, but in the end decided that life was too short,
and instead avoided using this machine for all except
the less disk-intensivek = 8-node runs.

Moral: There is always something else to go wrong.

8 Dynamic thresholding
There were also useful outputs from our tribulations.

The most tangible of these related to the horrible
realization that led to the withdrawal of our second sub-
mission of the pipelining paper. The issue in question
was algorithmic in nature, and concerned howZettair

was implemented. The solution to that problem is now
the subject of a separate paper [Lester et al., 2005]; this
section briefly summarizes the basis of that work.

Dynamic thresholding was mentioned in Section 3
as a technique for limiting memory usage. The
Zettair system nominally uses thecontinue
accumulator strategy [Moffat and Zobel, 1996]. Under
this scheme, postings are permitted to create new accu-
mulators until the limit is reached; thereafter postings
may update the scores of existing accumulators, but
not cause the creation of new ones. The original design
of these algorithms was that the transition between the
initial “ OR” state and the final “AND” state be made
at the end of processing an inverted list. However,
the implementation inZettair departed from this
by making the transition as soon as the accumulator
limit L was hit, even if this was in the middle of an
inverted list – a seemingly innocent “interpretation” of
the policy that had the benefit of makingL a firm limit,
rather than a target that might be grossly exceeded.

However, changing states in the middle of inverted
lists has the undesirable effect of favoring documents
that appear early in the collection, and has an adverse
impact on retrieval effectiveness. More critical from
our point of view was the consequent behavior of
Zettair – it contained an optimization that aborted
processing an inverted list when the largest document
number in an accumulator had been surpassed within
that list. In all of the systems, if the first term in a
query was the one that triggered the state change,
then the largest document number in the accumulator
could only be part-way through the collection, and the
Zettair optimization meant that only the first part of
each other inverted list was dealt with.

Even worse, in the pipelined system, the variable
recording “largest current document number in the ac-
cumulator set” was being passed from machine to ma-
chine as part of the query bundle without being properly
initialized, and once the accumulator limit had been
reached, the inverted lists for subsequent terms were
being fetched from disk, but not processed in any way.
That is, the system was reverting to thequit strategy
of Moffat and Zobel, magnifying apparent throughput
and giving pipelining an absolute advantage. It was this
complete breakdown in experimental rigor that caused
us to withdraw the second submission of our paper.

The chain of events involved in this error was
uncovered only when, post submission, we thought to
check again that the various schemes were identifying
roughly the same set of documents, and found that



they weren’t. The moral of this section is one that even
beginning software engineers are taught:

Moral: After making a change to a program, rerun
all of the tests, not just the most recent one.

9 Parallelization
One area that we did get right was that of parallelized
query processing. Much of the work in the area of text
query processing efficiency has employed a serial pro-
cessing model, with each query required to complete
before the next one is commenced. (Indeed, this was
a requirement of the 2005 TREC Terabyte efficiency
track). In this model, the objective is to minimize aver-
age query response time.

Our investigation allowed the parallel processing
of queries, and concentrated instead on minimizing the
elapsed time to process a whole batch of queries. In a
parallelized environment, average query response time
and query throughput rate are not the same. Indeed,
one generally maximizes throughput by allowing a
high degree of parallelism, at the expense of average
query response time. In a sense, the decision to support
parallelism was an easy one to make – right from the
planning stage, it was clear that pipelining would not
come close to matching document-distribution in a
serial-evaluation environment.

All three distribution methods were treated equally.
The public Zettair software does not support
parallelism, so modifications had to be added to
enable multi-threading. Experiments were then run
against each architecture with different numbers of
simultaneously active queries, to find the number
that maximized throughput, which turned out to be
32 simultaneous queries for all methods. Parallelism
allowed both document-partitioning and pipelining to
greatly increase throughput compared to serial mode
evaluation; using eight nodes, the former increased
throughput by over150%, the latter by almost600%.
Even a monolithicZettair system running on a
(hyper-threaded) single-processor system gained a
70% increase in throughput from parallelization.

Moral: Even on single-processor machines, it is
unlikely that maximum performance can be attained

without parallelization.

10 Conclusion
The initial experiments were promising for the
new pipelined architecture, but as we refined our
experimental design and techniques, the promise
slowly evaporated. We did, however, develop a
much richer understanding of how these experiments
should be performed, and a much keener appreciation
of the important issues in distributed text query
evaluation. We now have a strong basis for further
research into different techniques for index partitioning

and workload balancing in distributed retrieval
environments.
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